18 research outputs found

    AMELIORATIVE EFFECTS OF ARTEMISIA JUDAICA L. EXTRACT AGAINST ALLOXAN-INDUCED BIOCHEMICAL ALTERATIONS IN MALE WISTAR RATS

    Get PDF
    Objective: The current study aims to evaluate the potential of crude leaf extract of Artemisia judaica L. (AJE) in reducing the biochemical abnormalities accompanied to alloxan-induced diabetes in male Wistar rats.Methods: Thirty male albino rats (100-110 g) were divided equally into three groups including control, diabetic and diabetic+AJE. Diabetes was induced by using a single dose of alloxan (120 mg/kg of body weight). Serum biochemical parameters, including insulin, glucose, triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), very low density lipoprotein cholesterol (VLDL), total proteins, albumin, globulin, renal markers (creatinine, urea, uric acid), activities of aspartate transaminase (AST), alanine transaminase (ALT) and gamma-glutamyltransferase (ɤGT) were measured in all groups. Also, values of homeostasis model assessment of insulin resistance (HOMA-IR) and ratios of albumin: globulin (A: G), TC/HDL (risk factor-1), LDL/HDL (risk factor-2) were calculated for each group.Results: Diabetic rats showed reduction in body weight and marked decline in the values of serum insulin, protein profile indices and HDL accompanied with marked elevation in values of glucose, HOMA_IR, triglycerides, TC, LDL, VLDL, TC/HDL, LDL/HDL, renal markers and activities of the estimated enzymes. Supplementation of diabetic rats with AJE, twice daily for 30 days, significantly ameliorated most of the estimated biochemical parameters.Conclusion: The current results demonstrate that AJE possesses a hypoglycemic effect and acts as a protective factor against metabolic abnormalities induced by diabetes mellitus.Â

    Sublethal Effects of Spinosad (Tracer®) on the Cotton Leafworm (Lepidoptera: Noctuidae)

    No full text
    The effects of sublethal concentrations of spinosad (Tracer®) on development, fecundity, and food utilization, in the cotton leafworm, Spodoptera littoralis (Boisd.) were investigated. The fourth-instar larvae were fed on castor bean leaves treated with LC25 (13.9 ppm) or LC50 (57.8 ppm) of spinosad. Pupation and pupal weight were significantly reduced in both LC25 and LC50 treatments, compared with those of the controls. The fecundity rates of females in either LC25 or LC50 treatment were also reduced, compared with the controls. The residual activity of spinosad, applied on cotton at labeled field- and subfield-rates (200 and 70 g active substance (a.s.)/ 200 l water, respectively), was examined against the fifth-instar larvae of S. littoralis. Feeding deterrent effects were significantly demonstrated in larvae that fed on leaves collected from field plots with residual deposits of spinosad at 3 and 7 days old after application (DAA). The residual activity of spinosad on feeding and other metabolic parameters was decreased after 21 DAA indicating that the chemical started to degrade under field conditions. A histological study on midgut from larvae that previously fed on leaves treated with a concentration corresponding to the labeled-field rate of spinosad showed some alterations occurred after 48 and 96 h of treatment, compared to the normal midgut from the controls. The histological alterations included degeneration in the epithelial lining of the midgut and in the peritrophic matrix. Such histopathological effects are presumed to be responsible for the reduction in growth and food utilization caused by spinosad. It is, therefore, concluded that spinosad has sublethal effects on S. littoralis that may affect population dynamics in the field via reductions in survival and reproduction

    Objective Improvements in Peripheral Arterial Disease from Dorsal Root Ganglion Stimulation: A Case Series

    No full text
    BACKGROUND: The sympathetic nervous system (SNS) is important in the regulation of perfusion. Dorsal root ganglion stimulation (DRG-S) modulates sympathetic tone and is approved to treat complex regional pain syndrome, a disorder related to SNS dysfunction. We herein present 3 cases of DRG-S therapy to improve blood flow and symptoms of ischemia in peripheral arterial disease (PAD). METHODS: Patient 1 is a 44-year-old female with dry gangrene of the third and fourth digits of her right hand due to Raynaud's syndrome who was scheduled for amputation of the affected digits. DRG-S leads were placed at the right C6, 7, and 8 DRG. Pulse volume recordings (PVR) were measured at baseline and after DRG-S. Patient 2 is a 55-year-old female with a non-healing ulcer of her left foot secondary to PAD scheduled for a below the knee amputation who underwent a DRG-S trial with leads placed at the left L4 and L5 DRG followed by a spinal cord stimulation trial with leads placed at the T9-T10 spinal levels for comparison. Transcutaneous oximetry (TcPO2) was measured at baseline and after 3 days of each therapy. Patient 3 is a 69-year-old female with persistent left foot pain at rest secondary to PAD with DRG-S leads placed at the left L4 and S1 levels. RESULTS: All 3 patients experienced a significant reduction in pain with DRG-S, along with improvements in blood flow of the involved extremities, avoiding or limiting amputation. PVR improved dramatically with DRG-S in patient 1. A greater improvement in TcPO2 was seen with the DRG-S trial compared to spinal cord stimulation trial in patient 2. Patient 3 experienced an increase in walking distance and demonstrated long term efficacy and limb salvage at 32 months postimplantation. CONCLUSIONS: Modulation of SNS output from DRG-S through orthodromic and antidromic autonomic pathways is likely responsible for improving blood flow. DRG-S may be a treatment option for PAD
    corecore