22 research outputs found
Closed-form solution of curved beam model of elastic mechanical wheel
Based on the Timoshenko curved beam theory, a novel and feasible closed-form solution was proposed to deal with the internal mechanics characteristics of mechanical elastic wheel (MEW). With the Laplace transformation and boundary conditions, the governing differential equations was reduced to a single equation in regard to the rotation angle of curved beam, so as to reveal the relationship among the radial deformation, the tangential deformation and the curved angle. Furthermore, by adopting the Frobenius theory and the Green function, six normalized solutions of equations, the general solution and the free vibration of system equations were obtained. In the end, structure mechanics and vibration modal experiments were carried out and the results show that the analytical model is applicable for the experimental results
Comparative Analysis of Static Loading Performance of Rigid and Flexible Road Wheel based on Finite Element Method
To overcome the shortcomings of traditional rigid road wheel, such as poor damping effect and low load-bearing efficiency, a new type of flexible road wheel, having a unique suspension-bearing mode, was introduced. The three-dimensional nonlinear finite element model of rigid and flexible road wheel, considering the triple nonlinear characteristics of geometry, material and contact, is established for numerical investigation of static loading performance. The accuracy of the finite element model of the rigid and flexible road wheel is verified by static loading experiment. The static loading performance of the rigid and flexible road wheels is numerically analyzed. The influence of vertical load on maximum stress and deformation of the rigid and flexible wheels is also studied. The results show that the contact pressure uniformity of the flexible road wheel is better than that of the rigid road wheel under the static vertical load, but the maximum stress and deformation of the flexible road wheel are greater than that of the rigid road wheel. However, this problem can be solved by increasing the number of hinge sets and optimising the joints. The research results provide theoretical basis for replacing rigid road wheel with flexible road wheel, and also provide reference for structural optimisation of flexible road wheel
Equivalent stiffness and dynamic response of new mechanical elastic wheel
To investigate the stiffness characteristics of the new mechanical elastic wheel (MEW), the elastic foundation closed circle curved beam model of MEW was established by curved beam theory. With the Laplace transformation and boundary conditions of the governing differential equations, the analytical relations among the radial deformation, bending stiffness of elastic wheel, the elastic foundation stiffness of hinges, elastic wheel laminated structure parameters and excitation frequency were analyzed. The correctness of the curved beam model was validated by the finite element method. Curved beam model validation and the application of the nonlinear finite element model show that the influence of elastic wheel laminated structure and deformation on dynamic response is equal to the equivalent stiffness. The results indicate that the equivalent stiffness and dynamic response of MEW become increased nonlinearly with component content of elastic bead ring, moreover, the equivalent stiffness and dynamic response of MEW increase nonlinearly with the deformation amount of MEW, and the dynamic response significantly decreases with the increase of excitation frequency, under this circumstance that the laminated structure of elastic wheel has been unchanged
Integrated yaw and rollover stability control of an off-road vehicle with mechanical elastic wheel
An integrated control algorithm of the differential braking and the active suspension to improve yaw and rollover stability of vehicles with mechanical elastic wheel (ME-Wheel) is developed. By simplifying the structure of ME-Wheel, a fitting tire model named brush model is constructed. Then, a nonlinear 8-DOF vehicle model with ME-Wheel is built up for rollover prevention, which utilizes a predictive load transfer ratio (PLTR) as the rollover index and a Kalman filter is used to eliminate the measurement noise. In order to design an integrated control algorithm, fuzzy proportional-integral-derivative (PID) methodology is adopted by simultaneous control of the yaw and roll motions. The proposed algorithm, based on the idea that makes yaw stability controller and roll stability controller work independently first, then unifies by way of weight according to fuzz control, after that, brake force distributor selects single efficient braking wheel to achieve yaw moment and one of the front braking wheels with varying brake pressure to achieve the desired brake torque and the wheel slip regulator is designed with sliding mode control technique to prevent the wheels from locking; and the active suspension system alters the stiffness of the active suspension to prevent rollover. Simulation results show that the integrated yaw and rollover stability control system could improve the handing stability of vehicle under the limit driving conditions, and prevent rollover happening
Research on vibration characteristics and its key influencing factors of new mechanical elastic wheel
This paper presents the vibration characteristics and its key influencing factors of a new mechanical elastic wheel (MEW). The MEW was modeled as a ring on elastic foundations (REF) with distributed spring stiffness in the radial and tangential directions. The general forced solutions of inextensible vibration were derived by the use of a modal expansion technique and Arnoldi method, and the accuracy of the solutions had been validated by FEM simulation and modal test under free suspension and various loading situations. The natural frequencies and mode shapes of the rotating MEW could be obtained under free suspension and various loading situations. Moreover, the effects of various rotational speed, loading and different number of hinges on natural frequencies were investigated. Finally, the effect of different number of hinges on the damping ratio of the MEW radial modes was also analyzed. The analysis results reflect the objective law of the actual vibration characteristics of the MEW, and provide a reference for the MEW structure optimization and the vibration characteristics of the whole vehicle
Equivalent stiffness and dynamic response of new mechanical elastic wheel
To investigate the stiffness characteristics of the new mechanical elastic wheel (MEW), the elastic foundation closed circle curved beam model of MEW was established by curved beam theory. With the Laplace transformation and boundary conditions of the governing differential equations, the analytical relations among the radial deformation, bending stiffness of elastic wheel, the elastic foundation stiffness of hinges, elastic wheel laminated structure parameters and excitation frequency were analyzed. The correctness of the curved beam model was validated by the finite element method. Curved beam model validation and the application of the nonlinear finite element model show that the influence of elastic wheel laminated structure and deformation on dynamic response is equal to the equivalent stiffness. The results indicate that the equivalent stiffness and dynamic response of MEW become increased nonlinearly with component content of elastic bead ring, moreover, the equivalent stiffness and dynamic response of MEW increase nonlinearly with the deformation amount of MEW, and the dynamic response significantly decreases with the increase of excitation frequency, under this circumstance that the laminated structure of elastic wheel has been unchanged
Deep Reinforcement Learning-Based Torque Vectoring Control Considering Economy and Safety
This paper presents a novel torque vectoring control (TVC) method for four in-wheel-motor independent-drive electric vehicles that considers both energy-saving and safety performance using deep reinforcement learning (RL). Firstly, the tire model is identified using the Fibonacci tree optimization algorithm, and a hierarchical torque vectoring control scheme is designed based on a nonlinear seven-degree-of-freedom vehicle model. This control structure comprises an active safety control layer and a torque allocation layer based on RL. The active safety control layer provides a torque reference for the torque allocation layer to allocate torque while considering both energy-saving and safety performance. Specifically, a new heuristic random ensembled double Q-learning RL algorithm is proposed to calculate the optimal torque allocation for all driving conditions. Finally, numerical experiments are conducted under different driving conditions to validate the effectiveness of the proposed TVC method. Through comparative studies, we emphasize that the novel TVC method outperforms many existing related control results in improving vehicle safety and energy savings, as well as reducing driver workload
Integrated Avoid Collision Control of Autonomous Vehicle Based on Trajectory Re-Planning and V2V Information Interaction
An integrated longitudinal-lateral control method is proposed for autonomous vehicle trajectory tracking and dynamic collision avoidance. A method of obstacle trajectory prediction is proposed, in which the trajectory of the obstacle is predicted and the dynamic solution of the reference trajectory is realized. Aiming at the lane changing scene of autonomous vehicles driving in the same direction and adjacent lanes, a trajectory re-planning motion controller with the penalty function is designed. The reference trajectory parameterized output of local reprogramming is realized by using the method of curve fitting. In the framework of integrated control, Fuzzy adaptive (proportional-integral) PI controller is proposed for longitudinal velocity tracking. The selection and control of controller and velocity are realized by logical threshold method; A model predictive control (MPC) with vehicle-to-vehicle (V2V) information interaction modular and the driver characteristics is proposed for direction control. According to the control target, the objective function and constraints of the controller are designed. The proposed method’s performance in different scenarios is verified by simulation. The results show that the autonomous vehicles can avoid collision and have good stability
Autonomous Vehicle Path Planning Based on Driver Characteristics Identification and Improved Artificial Potential Field
Different driving styles should be considered in path planning for autonomous vehicles that are travelling alongside other traditional vehicles in the same traffic scene. Based on the drivers’ characteristics and artificial potential field (APF), an improved local path planning algorithm is proposed in this paper. A large amount of driver data are collected through tests and classified by the K-means algorithm. A Keras neural network model is trained by using the above data. APF is combined with driver characteristic identification. The distances between the vehicle and obstacle are normalized. The repulsive potential field functions are designed according to different driver characteristics and road boundaries. The designed local path planning method can adapt to different surrounding manual driving vehicles. The proposed human-like decision path planning method is compared with the traditional APF planning method. Simulation tests of an individual driver and various drivers with different characteristics in overtaking scenes are carried out. The simulation results show that the curves of human-like decision-making path planning method are more reasonable than those of the traditional APF path planning method; the proposed method can carry out more effective path planning for autonomous vehicles according to the different driving styles of surrounding manual vehicles
Numerical Prediction of Ride Comfort of Tracked Vehicle Equipped with Novel Flexible Road Wheels
Abstract Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles, heavily reliant on the driving system’s performance. While the road wheel is a key component of the driving system, traditional road wheels predominantly adopt a solid structure, exhibiting subpar adhesion performance and damping effects, thereby falling short of meeting the demands for high-speed, stable, and long-distance driving in tracked vehicles. Addressing this issue, this paper proposes a novel type of flexible road wheel (FRW) characterized by a catenary construction. The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic. First, three-dimensional (3D) finite element (FE) models of both flexible and rigid road wheels are established, considering material and contact nonlinearities. These models are validated through a wheel radial loading test. Based on the validated FE model, the paper uncovers the relationship between load and radial deformation of the road wheel, forming the basis for a nonlinear mathematical model. Subsequently, a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton’s second law. A random road model, considering the track effect and employing white noise, is constructed. The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades. The results demonstrate that, in comparison to the rigid road wheel (RRW), the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads. This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles