107 research outputs found

    A Class of Semiparametric Models with Homogeneous Structure for Panel Data Analysis

    Full text link
    Stimulated by the analysis of a dataset from China about Covid-19, we propose a class of semiparametric models for panel data analysis. The proposed models account for both homogeneity and heterogeneity among the individuals of a panel data. They strike a nice balance between parsimony and risk of misspecification. Although stimulated by the analysis of a particular dataset, the proposed models apply to very broad range of panel data analysis, they are powerful in exploring nonlinear dynamic patterns of impacts of covariates or transformed covariates. An estimation procedure is presented, and its asymptotic properties are established. Intensive simulation studies are also conducted to demonstrate how well the estimation procedure works and the risk of ignoring homogeneity or heterogeneity among individuals in panel data analysis. Finally, we apply the proposed models and estimation procedure to the Covid-19 data from China, and reveal some interesting dynamic patterns of the impacts of some important factors

    Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data

    Get PDF
    Land subsidence is one of the most important geological hazards in Beijing, China, and its scope and magnitude have been growing rapidly over the past few decades, mainly due to long-term groundwater withdrawal. Interferometric Synthetic Aperture Radar (InSAR) has been used to monitor the deformation in Beijing, but there is a lack of analysis of the long-term spatiotemporal evolution of land subsidence. This study focused on detecting and characterizing spatiotemporal changes in subsidence in the Beijing Plain by using Persistent Scatterer Interferometry (PSI) and geographic spatial analysis. Land subsidence during 2003–2015 was monitored by using ENVISAT ASAR (2003–2010), RADARSAT-2 (2011–2015) and TerraSAR-X (2010–2015) images, with results that are consistent with independent leveling measurements. The radar-based deformation velocity ranged from βˆ’136.9 to +15.2 mm/year during 2003–2010, and βˆ’149.4 to +8.9 mm/year during 2011–2015 relative to the reference point. The main subsidence areas include Chaoyang, Tongzhou, Shunyi and Changping districts, where seven subsidence bowls were observed between 2003 and 2015. Equal Fan Analysis Method (EFAM) shows that the maximum extensive direction was eastward, with a growing speed of 11.30 km2/year. Areas of differential subsidence were mostly located at the boundaries of the seven subsidence bowls, as indicated by the subsidence rate slope. Notably, the area of greatest subsidence was generally consistent with the patterns of groundwater decline in the Beijing Plain

    Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

    Full text link
    Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, obviating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment regularization stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets.Comment: NeurIPS 2023 (Spotlight); 37 pages, 16 figures, 15 tables; Code at https://github.com/youquanl/Segment-Any-Point-Clou

    Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

    Full text link
    The robustness of 3D perception systems under natural corruptions from environments and sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets often contain data that are meticulously cleaned. Such configurations, however, cannot reflect the reliability of perception models during the deployment stage. In this work, we present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios against natural corruptions that occur in real-world environments. Specifically, we consider eight corruption types stemming from adversarial weather conditions, external disturbances, and internal sensor failure. We uncover that, although promising results have been progressively achieved on standard benchmarks, state-of-the-art 3D perception models are at risk of being vulnerable to corruptions. We draw key observations on the use of data representations, augmentation schemes, and training strategies, that could severely affect the model's performance. To pursue better robustness, we propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency. We hope our benchmark and approach could inspire future research in designing more robust and reliable 3D perception models. Our robustness benchmark suite is publicly available.Comment: 33 pages, 26 figures, 26 tables; code at https://github.com/ldkong1205/Robo3D project page at https://ldkong.com/Robo3

    Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface

    Get PDF
    Heterogeneous integration of compound semiconductors on a Si platform leads to advanced device applications in the field of Si photonics and high frequency electronics. However, the unavoidable bubbles formed at the bonding interface are detrimental for achieving a high yield of dissimilar semiconductor integration by the direct wafer bonding technology. In this work, lateral outgassing surface trenches (LOTs) are introduced to efficiently inhibit the bubbles. It is found that the chemical reactions in InP-Si bonding are similar to those in Si-Si bonding, and the generated gas can escape via the LOTs. The outgassing efficiency is dominated by LOTs\u27 spacing, and moreover, the relationship between bubble formation and the LOT\u27s structure is well described by a thermodynamic model. With the method explored in this work, a 2-in. bubble-free crystalline InP thin film integrated on the Si substrate with LOTs is obtained by the ion-slicing and wafer bonding technology. The quantum well active region grown on this Si-based InP film shows a superior photoemission efficiency, and it is found to be 65% as compared to its bulk counterpart

    Susceptibilities of Yersinia pestis to Twelve Antimicrobial Agents in China

    Get PDF
    Streptomycin is the preferred choice for therapy of plague in China and other countries. However, Yersinia pestis exhibiting plasmid-mediated antimicrobial agent–resistant traits had been reported in Madagascar. In this study, we evaluated the susceptibility of traditional or newer antimicrobial agents used for treatment and/or prophylaxis of plague. Following Clinical and Laboratory Standards Institute (CLSI) recommendations, the susceptibility of 12 antimicrobial agents was evaluated by the agar microdilution method in 1,012 strains of Y. pestis isolated from 1943 to 2017 in 12 natural plague foci in China. One clinical Y. pestis isolate (S19960127) was found to be highly resistant to streptomycin, while the strain was still sensitive to other 11 antibiotics, that is, ciprofloxacin, ofloxacin, kanamycin, chloramphenicol, ampicillin, ceftriaxone, cefuroxime, trimethoprim-sulfamethoxazole, tetracycline, spectinomycin and moxifloxacin. The remaining 1,011 Y. pestis strains in this study demonstrated susceptibility to the above-mentioned 12 antimicrobial agents. Antimicrobial sensitivity surveillance of Y. pestis isolates, including dynamic monitoring of streptomycin resistance during various clinical plague treatments, should be carried out routinely

    Histopathological Observation of Immunized Rhesus Macaques with Plague Vaccines after Subcutaneous Infection of Yersinia pestis

    Get PDF
    In our previous study, complete protection was observed in Chinese-origin rhesus macaques immunized with SV1 (20 Β΅g F1 and 10 Β΅g rV270) and SV2 (200 Β΅g F1 and 100 Β΅g rV270) subunit vaccines and with EV76 live attenuated vaccine against subcutaneous challenge with 6Γ—106 CFU of Y. pestis. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological and immunohistochemical techniques. In addition, the glomerular basement membranes (GBMs) of the immunized animals and control animals were checked by electron microscopy. The results show no signs of histopathological lesions in the lungs, livers, kidneys, lymph nodes, spleens and hearts of the immunized animals at Day 14 after the challenge, whereas pathological alterations were seen in the corresponding tissues of the control animals. Giemsa staining, ultrastructural examination, and immunohistochemical staining revealed bacteria in some of the organs of the control animals, whereas no bacterium was observed among the immunized animals. Ultrastructural observation revealed that no glomerular immune deposits on the GBM. These observations suggest that the vaccines can effectively protect animals from any pathologic changes and eliminate Y. pestis from the immunized animals. The control animals died from multi-organ lesions specifically caused by the Y. pestis infection. We also found that subcutaneous infection of animals with Y. pestis results in bubonic plague, followed by pneumonic and septicemic plagues. The histopathologic features of plague in rhesus macaques closely resemble those of rodent and human plagues. Thus, Chinese-origin rhesus macaques serve as useful models in studying Y. pestis pathogenesis, host response and the efficacy of new medical countermeasures against plague

    A Portable Spectrophotometer for Water Quality Analysis

    No full text
    A portable water analyzer based on spectrophotometer has been designed and developed. The system embedded a module of 6 LEDs as long-life light source and a photodiode sensor transforms the light signal to electric signal, a microcontroller acts as the core of the analyzer to control the LEDs on/off, data acquisition, LCD and signal processing. For water quality analysis, a series of peak wavelength are selected including 420 nm, 455 nm, 515 nm, 560 nm, 605 nm and 630 nm, which can cover multiparameter like ammonia nitrogen, nitrite nitrogen, hexavalent chromium and arsenite up to 45 types. In order to test the performance, optical absorbance is measured back and fro, the results show it is with virtue of high repeatability and linearity. The system is suitable for rapid test in laboratory and in-situ river water samples test
    • …
    corecore