230 research outputs found

    Inducing R&D investment with price ceilings

    Get PDF
    Though government intervention is prevalent in the market for research and development (R&D), most literature has focused on the use of subsidies, patents or joint research ventures to obtain the efficient R&D investment. By using a two-stage duopoly model in which firms first choose the level of investment and then output, our paper shows that the introduction of a price ceiling by the regulator will result in the optimal level of R&D. This interesting but counterintuitive result contrasts with the existing literature and advances our understanding about price ceilings.Research and development; Subsidy; Price ceiling

    Analyzing adjuvant radiotherapy suggests a non monotonic radio-sensitivity over tumor volumes

    Get PDF
    Background: Adjuvant Radiotherapy (RT) after surgical removal of tumors proved beneficial in long-term tumor control and treatment planning. For many years, it has been well concluded that radio-sensitivities of tumors upon radiotherapy decrease according to the sizes of tumors and RT models based on Poisson statistics have been used extensively to validate clinical data. Results: We found that Poisson statistics on RT is actually derived from bacterial cells despite of many validations from clinical data. However cancerous cells do have abnormal cellular communications and use chemical messengers to signal both surrounding normal and cancerous cells to develop new blood vessels and to invade, to metastasis and to overcome intercellular spatial confinements in general. We therefore investigated the cell killing effects on adjuvant RT and found that radio-sensitivity is actually not a monotonic function of volume as it was believed before. We present detailed analysis and explanation to justify above statement. Based on EUD, we present an equivalent radio-sensitivity model. Conclusion: We conclude that radio sensitivity is a sophisticated function over tumor volumes, since tumor responses upon radio therapy also depend on cellular communications

    Analyzing Adjuvant Radiotherapy Suggests a Non Monotonic Radio-Sensitivity Over Tumor Volumes

    Get PDF
    Background: Adjuvant Radiotherapy (RT) after surgical removal of tumors proved beneficial in long-term tumor control and treatment planning. For many years, it has been well concluded that radio-sensitivities of tumors upon radiotherapy decrease according to the sizes of tumors and RT models based on Poisson statistics have been used extensively to validate clinical data. Results: We found that Poisson statistics on RT is actually derived from bacterial cells despite of many validations from clinical data. However cancerous cells do have abnormal cellular communications and use chemical messengers to signal both surrounding normal and cancerous cells to develop new blood vessels and to invade, to metastasis and to overcome intercellular spatial confinements in general. We therefore investigated the cell killing effects on adjuvant RT and found that radio-sensitivity is actually not a monotonic function of volume as it was believed before. We present detailed analysis and explanation to justify above statement. Based on EUD, we present an equivalent radio-sensitivity model. Conclusion: We conclude that radio sensitivity is a sophisticated function over tumor volumes, since tumor responses upon radio therapy also depend on cellular communications

    Identification of new members of hydrophobin family using primary structure analysis

    Get PDF
    BACKGROUND: Hydrophobins are fungal proteins that can turn into amphipathic membranes at hydrophilic/hydrophobic interfaces by self-assembly. The assemblages by Class I hydrophobins are extremely stable and possess the remarkable ability to change the polarity of the surface. One of its most important industrial applications is its usage as paint. Without detailed knowledge of the 3D structure and self-assembly principles of hydrophobins, it is difficult to make significant progress in furthering its research. RESULTS: In order to provide useful information to hydrophobin researchers, we analyzed primary structure of hydrophobins to gain more insight about these proteins. In this paper, we presented an in-depth primary sequence analysis using batch BLAST search of the database, sequence filtering by programming and motif finding by MEME. We used batch BLAST to find similar sequences in the NCBI nr database. Then we used MEME to find out motifs. Based on the newly found motifs and the well-known C-CC-C-C-CC-C pattern we used MAST to search the entire nr database. At the end, domain search and phylogenetic analysis were conducted to confirm the result. After searching the nr database with the new PSSM-format motifs identified by MEME, many sequences from various species were found by MAST. Filtering process by pattern, domain and length left 9 qualified candidates. CONCLUSION: All of 9 newly identified potential hydrophobins possess the common pattern and hydrophobin domain. From the multiple sequence alignment result, we can see that some of them are grouped very close to other known hydrophobins, which means their phylogenetic relationship is very close and it is highly plausible that they are indeed hydrophobin proteins

    Genomics, Molecular Imaging, Bioinformatics, and Bio-Nano-Info Integration are Synergistic Components of Translational Medicine and Personalized Healthcare Research

    Get PDF
    Supported by National Science Foundation (NSF), International Society of Intelligent Biological Medicine (ISIBM), International Journal of Computational Biology and Drug Design and International Journal of Functional Informatics and Personalized Medicine, IEEE 7th Bioinformatics and Bioengineering attracted more than 600 papers and 500 researchers and medical doctors. It was the only synergistic inter/multidisciplinary IEEE conference with 24 Keynote Lectures, 7 Tutorials, 5 Cutting-Edge Research Workshops and 32 Scientific Sessions including 11 Special Research Interest Sessions that were designed dynamically at Harvard in response to the current research trends and advances. The committee was very grateful for the IEEE Plenary Keynote Lectures given by: Dr. A. Keith Dunker (Indiana), Dr. Jun Liu (Harvard), Dr. Brian Athey (Michigan), Dr. Mark Borodovsky (Georgia Tech and President of ISIBM), Dr. Hamid Arabnia (Georgia and Vice-President of ISIBM), Dr. Ruzena Bajcsy (Berkeley and Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Chih-Ming Ho (UCLA and Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Andy Baxevanis (United States National Institutes of Health), Dr. Arif Ghafoor (Purdue), Dr. John Quackenbush (Harvard), Dr. Eric Jakobsson (UIUC), Dr. Vladimir Uversky (Indiana), Dr. Laura Elnitski (United States National Institutes of Health) and other world-class scientific leaders. The Harvard meeting was a large academic event 100% full-sponsored by IEEE financially and academically. After a rigorous peer-review process, the committee selected 27 high-quality research papers from 600 submissions. The committee is grateful for contributions from keynote speakers Dr. Russ Altman (IEEE BIBM conference keynote lecturer on combining simulation and machine learning to recognize function in 4D), Dr. Mary Qu Yang (IEEE BIBM workshop keynote lecturer on new initiatives of detecting microscopic disease using machine learning and molecular biology, http://ieeexplore.ieee.org/servlet/opac? punumber=4425386) and Dr. Jack Y.Yang (IEEE BIBM workshop keynote lecturer on data mining and knowledge discovery in translational medicine) from the first IEEE Computer Society BioInformatics and BioMedicine (IEEE BIBM) international conference and workshops, November 2- 4, 2007, Silicon Valley, California, USA

    Global Dynamics of an Avian Influenza A(H7N9) Epidemic Model with Latent Period and Nonlinear Recovery Rate

    Get PDF
    An SEIR type of compartmental model with nonlinear incidence and recovery rates was formulated to study the combined impacts of psychological effect and available resources of public health system especially the number of hospital beds on the transmission and control of A(H7N9) virus. Global stability of the disease-free and endemic equilibria is determined by the basic reproduction number as a threshold parameter and is obtained by constructing Lyapunov function and second additive compound matrix. The results obtained reveal that psychological effect and available resources do not change the stability of the steady states but can indeed diminish the peak and the final sizes of the infected. Our studies have practical implications for the transmission and control of A(H7N9) virus

    Supervised Learning Method for the Prediction of Subcellular Localization of Proteins Using Amino Acid and Amino Acid Pair Composition

    Get PDF
    Background Occurrence of protein in the cell is an important step in understanding its function. It is highly desirable to predict a protein\u27s subcellular locations automatically from its sequence. Most studied methods for prediction of subcellular localization of proteins are signal peptides, the location by sequence homology, and the correlation between the total amino acid compositions of proteins. Taking amino-acid composition and amino acid pair composition into consideration helps improving the prediction accuracy. Results We constructed a dataset of protein sequences from SWISS-PROT database and segmented them into 12 classes based on their subcellular locations. SVM modules were trained to predict the subcellular location based on amino acid composition and amino acid pair composition. Results were calculated after 10-fold cross validation. Radial Basis Function (RBF) outperformed polynomial and linear kernel functions. Total prediction accuracy reached to 71.8% for amino acid composition and 77.0% for amino acid pair composition. In order to observe the impact of number of subcellular locations we constructed two more datasets of nine and five subcellular locations. Total accuracy was further improved to 79.9% and 85.66%. Conclusions A new SVM based approach is presented based on amino acid and amino acid pair composition. Result shows that data simulation and taking more protein features into consideration improves the accuracy to a great extent. It was also noticed that the data set needs to be crafted to take account of the distribution of data in all the classes

    Promoting synergistic research and education in genomics and bioinformatics

    Get PDF
    Bioinformatics and Genomics are closely related disciplines that hold great promises for the advancement of research and development in complex biomedical systems, as well as public health, drug design, comparative genomics, personalized medicine and so on. Research and development in these two important areas are impacting the science and technology
    • 

    corecore