48 research outputs found

    Analyzing adjuvant radiotherapy suggests a non monotonic radio-sensitivity over tumor volumes

    Get PDF
    Background: Adjuvant Radiotherapy (RT) after surgical removal of tumors proved beneficial in long-term tumor control and treatment planning. For many years, it has been well concluded that radio-sensitivities of tumors upon radiotherapy decrease according to the sizes of tumors and RT models based on Poisson statistics have been used extensively to validate clinical data. Results: We found that Poisson statistics on RT is actually derived from bacterial cells despite of many validations from clinical data. However cancerous cells do have abnormal cellular communications and use chemical messengers to signal both surrounding normal and cancerous cells to develop new blood vessels and to invade, to metastasis and to overcome intercellular spatial confinements in general. We therefore investigated the cell killing effects on adjuvant RT and found that radio-sensitivity is actually not a monotonic function of volume as it was believed before. We present detailed analysis and explanation to justify above statement. Based on EUD, we present an equivalent radio-sensitivity model. Conclusion: We conclude that radio sensitivity is a sophisticated function over tumor volumes, since tumor responses upon radio therapy also depend on cellular communications

    Analyzing Adjuvant Radiotherapy Suggests a Non Monotonic Radio-Sensitivity Over Tumor Volumes

    Get PDF
    Background: Adjuvant Radiotherapy (RT) after surgical removal of tumors proved beneficial in long-term tumor control and treatment planning. For many years, it has been well concluded that radio-sensitivities of tumors upon radiotherapy decrease according to the sizes of tumors and RT models based on Poisson statistics have been used extensively to validate clinical data. Results: We found that Poisson statistics on RT is actually derived from bacterial cells despite of many validations from clinical data. However cancerous cells do have abnormal cellular communications and use chemical messengers to signal both surrounding normal and cancerous cells to develop new blood vessels and to invade, to metastasis and to overcome intercellular spatial confinements in general. We therefore investigated the cell killing effects on adjuvant RT and found that radio-sensitivity is actually not a monotonic function of volume as it was believed before. We present detailed analysis and explanation to justify above statement. Based on EUD, we present an equivalent radio-sensitivity model. Conclusion: We conclude that radio sensitivity is a sophisticated function over tumor volumes, since tumor responses upon radio therapy also depend on cellular communications

    Genomics, Molecular Imaging, Bioinformatics, and Bio-Nano-Info Integration are Synergistic Components of Translational Medicine and Personalized Healthcare Research

    Get PDF
    Supported by National Science Foundation (NSF), International Society of Intelligent Biological Medicine (ISIBM), International Journal of Computational Biology and Drug Design and International Journal of Functional Informatics and Personalized Medicine, IEEE 7th Bioinformatics and Bioengineering attracted more than 600 papers and 500 researchers and medical doctors. It was the only synergistic inter/multidisciplinary IEEE conference with 24 Keynote Lectures, 7 Tutorials, 5 Cutting-Edge Research Workshops and 32 Scientific Sessions including 11 Special Research Interest Sessions that were designed dynamically at Harvard in response to the current research trends and advances. The committee was very grateful for the IEEE Plenary Keynote Lectures given by: Dr. A. Keith Dunker (Indiana), Dr. Jun Liu (Harvard), Dr. Brian Athey (Michigan), Dr. Mark Borodovsky (Georgia Tech and President of ISIBM), Dr. Hamid Arabnia (Georgia and Vice-President of ISIBM), Dr. Ruzena Bajcsy (Berkeley and Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Chih-Ming Ho (UCLA and Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Andy Baxevanis (United States National Institutes of Health), Dr. Arif Ghafoor (Purdue), Dr. John Quackenbush (Harvard), Dr. Eric Jakobsson (UIUC), Dr. Vladimir Uversky (Indiana), Dr. Laura Elnitski (United States National Institutes of Health) and other world-class scientific leaders. The Harvard meeting was a large academic event 100% full-sponsored by IEEE financially and academically. After a rigorous peer-review process, the committee selected 27 high-quality research papers from 600 submissions. The committee is grateful for contributions from keynote speakers Dr. Russ Altman (IEEE BIBM conference keynote lecturer on combining simulation and machine learning to recognize function in 4D), Dr. Mary Qu Yang (IEEE BIBM workshop keynote lecturer on new initiatives of detecting microscopic disease using machine learning and molecular biology, http://ieeexplore.ieee.org/servlet/opac? punumber=4425386) and Dr. Jack Y.Yang (IEEE BIBM workshop keynote lecturer on data mining and knowledge discovery in translational medicine) from the first IEEE Computer Society BioInformatics and BioMedicine (IEEE BIBM) international conference and workshops, November 2- 4, 2007, Silicon Valley, California, USA

    Supervised Learning Method for the Prediction of Subcellular Localization of Proteins Using Amino Acid and Amino Acid Pair Composition

    Get PDF
    Background Occurrence of protein in the cell is an important step in understanding its function. It is highly desirable to predict a protein\u27s subcellular locations automatically from its sequence. Most studied methods for prediction of subcellular localization of proteins are signal peptides, the location by sequence homology, and the correlation between the total amino acid compositions of proteins. Taking amino-acid composition and amino acid pair composition into consideration helps improving the prediction accuracy. Results We constructed a dataset of protein sequences from SWISS-PROT database and segmented them into 12 classes based on their subcellular locations. SVM modules were trained to predict the subcellular location based on amino acid composition and amino acid pair composition. Results were calculated after 10-fold cross validation. Radial Basis Function (RBF) outperformed polynomial and linear kernel functions. Total prediction accuracy reached to 71.8% for amino acid composition and 77.0% for amino acid pair composition. In order to observe the impact of number of subcellular locations we constructed two more datasets of nine and five subcellular locations. Total accuracy was further improved to 79.9% and 85.66%. Conclusions A new SVM based approach is presented based on amino acid and amino acid pair composition. Result shows that data simulation and taking more protein features into consideration improves the accuracy to a great extent. It was also noticed that the data set needs to be crafted to take account of the distribution of data in all the classes

    Promoting synergistic research and education in genomics and bioinformatics

    Get PDF
    Bioinformatics and Genomics are closely related disciplines that hold great promises for the advancement of research and development in complex biomedical systems, as well as public health, drug design, comparative genomics, personalized medicine and so on. Research and development in these two important areas are impacting the science and technology

    ILOOP – a web application for two-channel microarray interwoven loop design

    Get PDF
    Microarray technology is widely applied to address complex scientific questions. However, there remain fundamental issues on how to design experiments to ensure that the resulting data enables robust statistical analysis. Interwoven loop design has several advantages over other designs. However it suffers in the complexity of design. We have implemented an online web application which allows users to find optimal loop designs for two-color microarray experiments. Given a number of conditions (such as treatments or time points) and replicates, the application will find the best possible design of the experiment and output experimental parameters. It is freely available from
    corecore