24 research outputs found

    Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation

    Get PDF
    Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p \u3c 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC

    Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation

    Get PDF
    Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p \u3c 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC

    Fully Automatic Operation Algorithm of Urban Rail Train Based on RBFNN Position Output Constrained Robust Adaptive Control

    No full text
    High parking accuracy, comfort and stability, and fast response speed are important indicators to measure the control performance of a fully automatic operation system. In this paper, aiming at the problem of low accuracy of the fully automatic operation control of urban rail trains, a radial basis function neural network position output-constrained robust adaptive control algorithm based on train operation curve tracking is proposed. Firstly, on the basis of the mechanism of motion mechanics, the nonlinear dynamic model of train motion is established. Then, RBFNN is used to adaptively approximate and compensate for the additional resistance and unknown interference of the train model, and the basic resistance parameter adaptive mechanism is introduced to enhance the anti-interference ability and adaptability of the control system. Lastly, on the basis of the RBFNN position output-constrained robust adaptive control technology, the train can track the desired operation curve, thereby achieving the smooth operation between stations and accurate stopping. The simulation results show that the position output-constrained robust adaptive control algorithm based on RBFNN has good robustness and adaptability. In the case of system parameter uncertainty and external disturbance, the control system can ensure high-precision control and improve the ride comfort

    Optimization of Urban Rail Automatic Train Operation System Based on RBF Neural Network Adaptive Terminal Sliding Mode Fault Tolerant Control

    No full text
    Aiming at the problem of the large tracking error of the desired curve for the automatic train operation (ATO) control strategy, an ATO control algorithm based on RBF neural network adaptive terminal sliding mode fault-tolerant control (ATSM-FTC-RBFNN) is proposed to realize the accurate tracking control of train operation curve. On the one hand, considering the state delay of trains in operation, a nonlinear dynamic model is established based on the mechanism of motion mechanics. Then, the terminal sliding mode control principle is used to design the ATO control algorithm, and the adaptive mechanism is introduced to enhance the adaptability of the system. On the other hand, RBFNN is used to adaptively approximate and compensate the additional resistance disturbance to the model so that ATO control with larger disturbance can be realized with smaller switching gain, and the tracking performance and anti-interference ability of the system can be enhanced. Finally, considering the actuator failure and the control input limitation, the fault-tolerant mechanism is introduced to further enhance the fault-tolerant performance of the system. The simulation results show that the control can compensate and process the nonlinear effects of control input saturation, delay, and actuator faults synchronously under the condition of uncertain parameters, external disturbances of the system model and can achieve a small error tracking the desired curve

    Dexmedetomidine improves the outcomes for pediatric severe sepsis with mechanical ventilation

    No full text
    Abstract Background The sedative dexmedetomidine has been shown to reduce mortality in adult patients with severe sepsis, but it is not known whether children benefit. This study explored the effects of dexmedetomidine on the outcomes of children with severe sepsis with mechanical ventilation. Methods In this retrospective cohort study, children with severe sepsis requiring mechanical ventilation from 2016 to 2020 were categorized as dexmedetomidine and non-dexmedetomidine group. The propensity score matching was performed to match cases in both groups. The primary outcome was 28-day mortality, and the secondary outcomes were acute kidney injury, ventilator-free days, lengths of PICU and hospital stays. The Kaplan-Meier method and was the log-rank test used to estimate the 28-day mortality rate and assess between-group differences. Results In total, 250 patients were eligible patients: 138 in the dexmedetomidine group and 112 in the non-dexmedetomidine group. After 1:1 propensity score matching, 61 children in each group. dexmedetomidine group showed more lower 28-day mortality (9.84% vs. 26.23%, P = 0.008). During the 7-day observation period after PICU admission, the dexmedetomidine group showed significantly lower neurological and renal sub-scores at day 7 and serum creatinine level at day 3 and day 7. There were no statistical differences in the incidence of acute kidney injury, ventilator-free days, lengths of PICU and hospital stays between the two groups. Conclusions dexmedetomidine treatment in children with severe sepsis is associated with better outcomes and should therefore be considered for the sedation strategy

    Modified Inguinal Microscope-Assisted Varicocelectomy under Local Anesthesia: A Non-randomised Controlled Study of 3565 Cases

    No full text
    Abstract Varicocele is a common abnormality, but the conventional microsurgical subinguinal varicocelectomy (CMSV) has some disadvantages. We invented Modified Inguinal Microscope-Assisted Varicocelectomy (MIMV) under local anesthesia. This study aims to evaluate MIMV by comparing it to CMSV in operating duration, time to return to normal activity, postoperative complications, achievement of natural pregnancy and improvement of semen quality for patients with infertility, pain score for those with scrotal pain, and so on. We enrolled 3089 patients who underwent MIMV and 476 who underwent CMSV in our hospital. Both the operating duration and the time to return to normal activity of MIMV was shorter than that of CMSV (P < 0.001). The recurrence rate (P < 0.001) and injury rate of vas deferens (P = 0.011) after MIMV were lower than that after CMSV. Moreover, patients with MIMV showed higher degree of satisfaction with the surgery experience and outcome than those with CMSV (P < 0.001). However, no statistical difference was found between the two groups in scores of pain due to surgery, postoperative varicose veins diameters, reflux duration, and the postoperative complications of wound infection, hydrocele, atrophy of testis, epididymitis, and scrotal hematoma. In summary, MIMV is a promising varicocelectomy and could be applied more in clinical practice
    corecore