45 research outputs found
The Virion Host Shut-Off (vhs) Protein Blocks a TLR-Independent Pathway of Herpes Simplex Virus Type 1 Recognition in Human and Mouse Dendritic Cells
Molecular pathways underlying the activation of dendritic cells (DCs) in response to Herpes Simplex Virus type 1 (HSV-1) are poorly understood. Removal of the HSV virion host shut-off (vhs) protein relieves a block to DC activation observed during wild-type infection. In this study, we utilized a potent DC stimulatory HSV-1 recombinant virus lacking vhs as a tool to investigate the mechanisms involved in the activation of DCs by HSV-1. We report that the release of pro-inflammatory cytokines by conventional DC (cDC) during HSV-1 infection is triggered by both virus replication-dependent and replication-independent pathways. Interestingly, while vhs is capable of inhibiting the release of cytokines during infection of human and mouse cDCs, the secretion of cytokines by plasmacytoid DC (pDC) is not affected by vhs. These data prompted us to postulate that infection of cDCs by HSV triggers a TLR independent pathway for cDC activation that is susceptible to blockage by the vhs protein. Using cDCs isolated from mice deficient in both the TLR adaptor protein MyD88 and TLR3, we show that HSV-1 and the vhs-deleted virus can activate cDCs independently of TLR signaling. In addition, virion-associated vhs fails to block cDC activation in response to treatment with TLR agonists, but it efficiently blocked cDC activation triggered by the paramyxoviruses Sendai Virus (SeV) and Newcastle Disease Virus (NDV). This block to SeV- and NDV-induced activation of cDC resulted in elevated SeV and NDV viral gene expression indicating that infection with HSV-1 enhances the cell's susceptibility to other pathogens through the action of vhs. Our results demonstrate for the first time that a viral protein contained in the tegument of HSV-1 can block the induction of DC activation by TLR-independent pathways of viral recognition
Chemoproteomics reveals Toll-like receptor fatty acylation
Partial funding for Open Access provided by The Ohio State University Open Access Fund.Background: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity.
This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular
interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification
and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to
identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells.
Results: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been
previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new
proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was
uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2
S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased
inflammatory response to microbial ligands.
Conclusions: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell
type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. Spalmitoylation
of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue
for modulation of TLR2 inflammatory activity.This work was supported by funding from the NIH/NIAID (grant R00AI095348 to J.S.Y.), the NIH/NIGMS (R01GM087544 to HCH), and the Ohio State University Public Health Preparedness for Infectious Diseases (PHPID) program. NMC is supported by the Ohio State University Systems and Integrative Biology Training Program (NIH/NIGMS grant T32GM068412). BWZ is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362)
MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis
ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants
Bat caliciviruses and human noroviruses are antigenically similar and have overlapping histo-blood group antigen binding profiles
Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations
Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection
Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination
Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection
Ten promotion and tenure tips for microbiologists and immunologists
ABSTRACTIn this editorial, I share advice and general principles based on recent experiences as a mentor and evaluator for early-career microbiology and immunology faculty seeking promotion and tenure. I outline 10 recommendations covering research, service, teaching, and mentoring. In addition, I encourage nuanced conversations with colleagues to strategically navigate the unique promotion and tenure processes at different institutions. I hope that these practical tips will assist early-career faculty in attaining promotion and tenure, contributing to long-term scientific and career advances