186 research outputs found

    The Future Theater-Level Model: A Research Project Update

    Get PDF
    Proceedings of the 1994 Winter Simulation Conference ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. SeilaResearch has been conducted at the Naval Postgraduate School into new methodologies for joint theater-level combat simulation modeling, emphasizing C3I, operational intelligence, decisionmaking under uncertainty, and aggregated stochastic process modeling. Research outcomes to date as well as a prototype software tool are described in this paper

    Optimization of the design of ducted-fan hovering micro air vehicles using finite element simulation and orthogonal design

    Get PDF
    The structural design and flight stability characteristics of micro air vehicles have received much attention due to its low Reynolds number. Compared with fixed-wing aircraft, hovering ducted-fan micro air vehicles with vertical takeoff and landing and hovering capabilities have promising prospect. In this article, a flexible membrane and inflatable structure has been used as the aerodynamic shape of an aircraft model. Its advantages have been analyzed and verified by fluid-structure interaction based on finite element method. The flight stability of hovering micro air vehicles has also been investigated based on the theory of motion of structure. In order to improve the flight stability of the designed hovering micro air vehicle model, the effects of geometrical parameters and materials have been analyzed through an orthogonal experimental design. Based on the optimized results, the aircraft prototype has been manufactured for experimental test. The elastic deformation produced on its flexible membrane structure is obtained by stroboscopic stereo imaging method and a purpose-built experimental environment. The numerical simulation results indicated that the thickness of membrane and material of vertical duct have significant effects on the micro air vehicle flight stability and disturbance resistance ability. The results have confirmed that the flexible aerodynamic mechanisms produced by the aeroelastic deformation of spherical membrane can enhance the micro air vehicle stability.This work was financially supported by Support Program of National Ministry of Education of China (No. 625010110), National Natural Science Foundation of China (No. 61179043), and Specialized Research Fund for the Doctoral Program (SRFDP) of Higher Education (No. 20070056085)

    Impact of Hormone Replacement Therapy on Exercise Training-Induced Improvements in Insulin Action in Sedentary Overweight Adults

    Get PDF
    Exercise training (ET) and hormone replacement therapy (HRT) are both recognized influences on insulin action, but the influence of HRT on responses to ET has not been examined. In order to determine if HRT use provided additive benefits for the response of insulin action to ET, we evaluated the impact of HRT use on changes in insulin during the course of a randomized, controlled, aerobic ET intervention. Subjects at baseline were sedentary, dyslipidemic, and overweight. These individuals were randomized to six months of one of three aerobic ET interventions or continued physical inactivity. In 206 subjects, an insulin sensitivity index (SI) was obtained with a frequently sampled intravenous glucose tolerance test pre- and post-ET. Baseline and post-intervention fitness, regional adiposity, general adiposity, skeletal muscle biochemistry and histology, and serum lipoproteins were measured as other putative mediators influencing insulin action. Two-way analyses of variance were used to determine if gender or HRT use influenced responses to exercise training. Linear modeling was used to determine if predictors for response in SI differed by gender or HRT use. Women who used HRT (HRT+) demonstrated significantly greater improvements in SI with ET than women not using HRT (HRT-). In those HRT+ women, plasma triglyceride change best correlated with change in SI. For HRT- women, capillary density change, and for men, subcutaneous adiposity change, best correlated with change in SI. In summary, in an ET intervention, HRT use appears associated with more robust responses in insulin action. Also, relationships between ET induced changes in insulin action and potential mediators of change in insulin action are different for men, and for women on or off HRT. These findings have implications for the relative utility of ET for improving insulin action in middle-aged men and women, particularly in the setting of differences in HRT use. Address Originally published Metabolism, Vol. 57, No. 7, July 200

    Reprogramming Primordial Germ Cells into Pluripotent Stem Cells

    Get PDF
    Background: Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF. Methodology and Principal Findings: Here we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency. Conclusions/Significance: We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state

    The Nanos3-3′UTR Is Required for Germ Cell Specific NANOS3 Expression in Mouse Embryos

    Get PDF
    BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo

    Mouse Apolipoprotein B Editing Complex 3 (APOBEC3) Is Expressed in Germ Cells and Interacts with Dead-End (DND1)

    Get PDF
    encoded protein, DND1, is able to bind to the 3′-untranslated region (UTR) of messenger RNAs (mRNAs) to displace micro-RNA (miRNA) interaction with mRNA. Thus, one function of DND1 is to prevent miRNA mediated repression of mRNA. We report that DND1 interacts specifically with APOBEC3. APOBEC3 is a multi-functional protein. It inhibits retroviral replication. In addition, recent studies show that APOBEC3 interacts with cellular RNA-binding proteins and to mRNA to inhibit miRNA-mediated repression of mRNA.Here we show that DND1 specifically interacts with another cellular protein, APOBEC3. We present our data which shows that DND1 co-immunoprecipitates APOBEC3 from mammalian cells and also endogenous APOBEC3 from mouse gonads. Whether the two proteins interact directly remains to be elucidated. We show that both DND1 and APOBEC3 are expressed in germ cells and in the early gonads of mouse embryo. Expression of fluorescently-tagged DND1 and APOBEC3 indicate they localize to the cytoplasm and when DND1 and APOBEC3 are expressed together in cells, they sequester near peri-nuclear sites.The 3′-UTR of mRNAs generally encode multiple miRNA binding sites as well as binding sites for a variety of RNA binding proteins. In light of our findings of DND1-APOBEC3 interaction and taking into consideration reports that DND1 and APOBEC3 bind to mRNA to inhibit miRNA mediated repression, our studies implicate a possible role of DND1-APOBEC3 interaction in modulating miRNA-mediated mRNA repression. The interaction of DND1 and APOBEC3 could be one mechanism for maintaining viability of germ cells and for preventing germ cell tumor development

    Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    Get PDF
    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility

    The ter Mutation in the Rat Dnd1 Gene Initiates Gonadal Teratomas and Infertility in Both Genders

    Get PDF
    A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1ter/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders

    Hydrodynamic slip can align thin nanoplatelets in shear flow

    Get PDF
    The large-scale processing of nanomaterials such as graphene and MoS2 relies on understanding the flow behaviour of nanometrically-thin platelets suspended in liquids. Here we show, by combining non-equilibrium molecular dynamics and continuum simulations, that rigid nanoplatelets can attain a stable orientation for sufficiently strong flows. Such a stable orientation is in contradiction with the rotational motion predicted by classical colloidal hydrodynamics. This surprising effect is due to hydrodynamic slip at the liquid-solid interface and occurs when the slip length is larger than the platelet thickness; a slip length of a few nanometers may be sufficient to observe alignment. The predictions we developed by examining pure and surface-modified graphene is applicable to different solvent/2D material combinations. The emergence of a fixed orientation in a direction nearly parallel to the flow implies a slip-dependent change in several macroscopic transport properties, with potential impact on applications ranging from functional inks to nanocomposites.Energy Technolog

    Insulin Gene Expression Is Regulated by DNA Methylation

    Get PDF
    BACKGROUND:Insulin is a critical component of metabolic control, and as such, insulin gene expression has been the focus of extensive study. DNA sequences that regulate transcription of the insulin gene and the majority of regulatory factors have already been identified. However, only recently have other components of insulin gene expression been investigated, and in this study we examine the role of DNA methylation in the regulation of mouse and human insulin gene expression. METHODOLOGY/PRINCIPAL FINDINGS:Genomic DNA samples from several tissues were bisulfite-treated and sequenced which revealed that cytosine-guanosine dinucleotide (CpG) sites in both the mouse Ins2 and human INS promoters are uniquely demethylated in insulin-producing pancreatic beta cells. Methylation of these CpG sites suppressed insulin promoter-driven reporter gene activity by almost 90% and specific methylation of the CpG site in the cAMP responsive element (CRE) in the promoter alone suppressed insulin promoter activity by 50%. Methylation did not directly inhibit factor binding to the CRE in vitro, but inhibited ATF2 and CREB binding in vivo and conversely increased the binding of methyl CpG binding protein 2 (MeCP2). Examination of the Ins2 gene in mouse embryonic stem cell cultures revealed that it is fully methylated and becomes demethylated as the cells differentiate into insulin-expressing cells in vitro. CONCLUSIONS/SIGNIFICANCE:Our findings suggest that insulin promoter CpG demethylation may play a crucial role in beta cell maturation and tissue-specific insulin gene expression
    • …
    corecore