152 research outputs found

    Electrostatic Active Radiation Shielding -- Revisited

    Get PDF
    For the success of NASA\u27s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is \u27\u27a must solve\u27\u27 problem The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to space require protection from the hazards of the accumulated exposures of space radiation, galactic cosmic rays (GCR) and solar particle events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the innovative materials shielding and protection technologies. The full space radiation environment has been used for the investigation. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn, should the electrostatic shielding be successful, for the future directions of space radiation protection

    Hardware for digitally controlled scanned probe microscopes

    Get PDF
    The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the microscope control system an insignificant factor for most experiments. The adaptation of the system to various types of SPM experiments is discussed. Advances in audio electronics and digital signal processors have made the construction of such high performance systems possible at low cost

    Annular Air Leaks in a Liquid Hydrogen Storage Tank

    Get PDF
    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite-frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the optimal approach is to allow the frozen air to melt and use a water stream to prevent the outer shell from chilling

    The Safe Removal of Frozen Air from the Annulus of an LH2 Storage Tank

    Get PDF
    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modeling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods

    Characterizing the Performance of Liquid Oxygen in a Magnetic Fluid Management System

    Get PDF
    The strong paramagnetic susceptibility of liquid oxygen (LOX) has established it as a good candidate for a cryogenic magnetic fluid system. While these properties have been defined for several decades, the continuing advancement and requirements of space technology will soon find a suitable application for a magnetic fluid system which can operate reliably and efficiently. Testing has begun on the dynamics of LOX when applied to electrically-induced steady and varying magnetic fields within a solenoid. The performance of LOX as a working fluid was characterized by its operability and sustainable pressure before breakdown. This paper presents numerical and experimental data on the performance characteristics of LOX in a magnetic fluid management system

    Monsters: interdisciplinary explorations in monstrosity

    Get PDF
    There is a continued fascination with all things monster. This is partly due to the popular reception of Mary Shelley’s Monster, termed a “new species” by its overreaching but admiringly determined maker Victor Frankenstein in the eponymous novel first published in 1818. The enduring impact of Shelley’s novel, which spans a plethora of subjects and genres in imagery and themes, raises questions of origin and identity, death, birth and family relationships as well as the contradictory qualities of the monster. Monsters serve as metaphors for anxieties of aberration and innovation. Stephen Asma (2009) notes that monsters represent evil or moral transgression and each epoch, to speak with Michel Foucault, evidences a “particular type of monster” (2003, 66). Academic debates tend to explore how social and cultural threats come to be embodied in the figure of a monster and their actions literalize our deepest fears. Monsters in contemporary culture, however, have become are more humane than ever before. Monsters are strong, resilient, creative and sly creatures. Through their playful and invigorating energy they can be seen to disrupt and unsettle. They still cater to the appetite for horror, but they also encourage us to feel empathy. The encounter with a monster can enable us to stop, wonder and change our attitudes towards technology and our body and each other. This commentary article considers the use of the concepts of ‘monsters’ or ‘monstrosity’ in literature, contemporary research, culture and teaching contexts at the intersection of the Humanities and the Social Sciences
    corecore