13 research outputs found

    Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data

    Get PDF
    First described from western Kansas, USA, the western corn rootworm, Diabrotica virgifera virgifera, is one of the worst pests of maize. The species is generally thought to be of Mexican origin and to have incidentally followed the expansion of maize cultivation into North America thousands of years ago. However, this hypothesis has never been investigated formally. In this study, the genetic variability of samples collected throughout North America was analysed at 13 microsatellite marker loci to explore precisely the population genetic structure and colonization history of D. v. virgifera. In particular, we used up-to-date approximate Bayesian computation methods based on random forest algorithms to test a Mexican versus a central-USA origin of the species, and to compare various possible timings of colonization. This analysis provided strong evidence that the origin of D. v. virgifera was southern (Mexico, or even further south). Surprisingly, we also found that the expansion of the species north of its origin was recent—probably not before 1100 years ago—thus indicating it was not directly associated with the early history of maize expansion out of Mexico, a far more ancient event

    Lipid-related genes and myocardial infarction in 4685 cases and 3460 controls: discrepancies between genotype, blood lipid concentrations, and coronary disease risk.

    No full text
    BACKGROUND: Blood lipid concentrations are causally related to the risk of coronary heart disease (CHD). Various associations between CHD risk and genes that moderately affect plasma lipid levels have been described, but previous studies have typically involved too few 'cases' to assess these associations reliably. METHODS: The present study involves 4685 cases of myocardial infarction (MI) and 3460 unrelated controls without diagnosed cardiovascular disease. Six polymorphisms of four 'lipid-related' genes were genotyped. RESULTS: For the apolipoprotein E epsilon2/epsilon3/epsilon4 polymorphism, the average increase in the plasma ratio of apolipoprotein B to apolipoprotein A(1) (apoB/apoA(1) ratio) among controls was 0.082 (s.e. 0.007) per stepwise change from epsilon3/epsilon2 to epsilon3/epsilon3 to epsilon3/epsilon4 genotype (trend P < 0.0001). The case-control comparison yielded a risk ratio for MI of 1.16 (95% CI: 1.06, 1.27; P = 0.001) per stepwise change in these genotypes. But, this risk ratio was not as extreme as would have been expected from the corresponding differences in plasma apoB/apoA(1) ratio between genotypes. Hence, following adjustment for the measured level of the plasma apoB/apoA(1) ratio, the direction of the risk ratio per stepwise change reversed to 0.83 (95% CI: 0.74, 0.92; P < 0.001). Similarly, for the apolipoprotein B Asn4311Ser and Thr71Ile polymorphisms, genotypes associated with more adverse plasma apolipoprotein concentrations were associated with significantly lower risk of MI after adjustment for the apoB/apoA(1) ratio. The B2 allele of the cholesteryl ester transfer protein TaqIb polymorphism was associated with a significantly lower plasma apoB/apoA(1) ratio, but with no significant difference in the risk of MI. Finally, the lipoprotein lipase Asn291Ser and T4509C (PvuII) polymorphisms did not produce clear effects on either the plasma apoB/apoA(1) ratio or the risk of MI. CONCLUSIONS: It remains unresolved why some of these genetic factors that produce lifelong effects on plasma lipid concentrations have significantly less than the correspondingly expected effects on CHD rates in adult life

    Large-scale evidence that the cardiotoxicity of smoking is not significantly modified by the apolipoprotein E epsilon2/epsilon3/epsilon4 genotype.

    No full text
    Results from two small studies, involving a total of only 174 cases, have suggested that the increased risk of coronary heart disease conferred by cigarette smoking is substantially affected by genotype at the apolipoprotein E (APOE) epsilon2/epsilon3/epsilon4 polymorphism. We have established APOE genotypes in 4484 patients with acute myocardial infarction diagnosed before the age of 55 years for male and 65 years for female patients, and in 5757 controls with no history of cardiovascular disease. On average, the hazard ratio for myocardial infarction was 1.17 (95% CI 1.09-1.25; p&lt;0.00001) per stepwise change from epsilon3/2 to epsilon3/3 to epsilon3/4 genotype. Among individuals in this study with known cigarette smoking status, the hazard ratio for myocardial infarction in smokers versus non-smokers was 4.6 (4.2-5.1). There was, however, no significant difference between the smoker/non-smoker hazard ratios for those with different APOE genotypes (chi2(2)=0.69; p=0.7). When differences in risk between different genotypes are not extreme (as with this APOE polymorphism), reliable assessment of hypothesised gene-environment interactions will often require the study of many thousands of disease cases

    SASE3 Variable Polarization Project at the European XFEL

    No full text
    At the European XFEL, two undulator systems for hard and one for soft X-rays have been successfully put into operation. The SASE3 soft X-ray undulator system generates linearly polarized radiation in the horizontal plane. One of the requirements for extending the radiation characteristics is the ability to obtain different polarization modes. These include both right and left circular, elliptical polarization, or linear polarization at an arbitrary angle. For this purpose, a system consisting of four APPLE X helical undulators developed at the Paul Scherrer Institute (PSI) is used. This paper presents the design parameters of the SASE3 undulator system after modifying it with the helical afterburner. It also describes the methods and the design solutions different from those used at PSI. The status and schedule of the project are introduced

    Functional profiling of the Saccharomyces cerevisiae genome

    No full text
    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore