44 research outputs found

    Review of Wireless Brain-Computer Interface Systems

    Get PDF

    Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel

    No full text
    Particle behavior in viscoelastic fluids has attracted considerable attention in recent years. In viscoelastic fluids, as opposed to Newtonian fluids, particle focusing can be simply realized in a microchannel without any external forces or complex structures. In this study, a polydimethylsiloxane (PDMS) microchannel with a rhombic cross-sectional shape was fabricated to experimentally investigate the behavior of inertial and elasto-inertial particles. Particle migration and behavior in Newtonian and non-Newtonian fluids were compared with respect to the flow rate and particle size to investigate their effect on the particle focusing position and focusing width. The PDMS rhombic microchannel was fabricated using basic microelectromechanical systems (MEMS) processes. The experimental results showed that single-line particle focusing was formed along the centerline of the microchannel in the non-Newtonian fluid, unlike the double-line particle focusing in the Newtonian fluid over a wide range of flow rates. Numerical simulation using the same flow conditions as in the experiments revealed that the particles suspended in the channel tend to drift toward the center of the channel owing to the negative net force throughout the cross-sectional area. This supports the experimental observation that the viscoelastic fluid in the rhombic microchannel significantly influences particle migration toward the channel center without any external force owing to coupling between the inertia and elasticity

    Elasto-Inertial Particle Focusing in Microchannel with T-Shaped Cross-Section

    No full text
    Recently, particle manipulation in non-Newtonian fluids has attracted increasing attention because of a good particle focusing toward the mid-plane of a channel. In this research, we proposed a simple and robust fabrication method to make a microchannel with various T-shaped cross-sections for particle focusing and separation in a viscoelastic solution. SU-8-based soft lithography was used to form three different types of microchannels with T-shaped cross-sections, which enabled self-alignment and plasma bonding between two PDMS molds. The effects of the flow rate and geometric shape of the cross-sections on particle focusing were evaluated in straight microchannels with T-shaped cross-sections. Moreover, by taking images from the top and side part of the channels, it was possible to confirm the position of the particles three-dimensionally. The effects of the corner angle of the channel and the aspect ratio of the height to width of the T shape on the elasto-inertial focusing phenomenon were evaluated and compared with each other using numerical simulation. Simulation results for the particle focusing agreed well with the experimental results both in qualitatively and quantitatively. Furthermore, the numerical study showed a potential implication for particle separation depending on its size when the aspect ratio of the T-shaped microchannel and the flow rate were appropriately leveraged
    corecore