114 research outputs found

    Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    Get PDF
    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction

    Should Labor Defend Worker Rights as Human Rights? A Debate

    Get PDF
    The authors debate the relative merits and drawbacks of defining the labor movement under the umbrella of human rights, and the virtues of the rights of the individual versus the solidarity of the community

    Instrumentation for potentiostatic corrosion studies with distilled water

    Get PDF
    Corrosion is studied potentiostatically in the corroding environment of distilled water with an instrument that measures the potential of the corroding specimen immediately after interruption of the polarizing current. No current is flowing. The process permits compensation for IR drops when potentiostatic control is used in high resistance systems

    Directional isothermal growth of highly textured Bi2Sr2CaCu2Oy

    Get PDF
    For Bi2Sr2CaCu2Oy (2212), it is shown that an oxygen gradient, as opposed to a temperature gradient, can be used to produce large bulk forms of the 2212 superconductor with highly textured microstructures from an oxygen‐deficient melt held at a constant temperature. Material produced in this manner was found to have transition temperatures between 85 and 92 K, high critical current densities below 20 K, and modest critical current densities at 77 K

    Visualizing size-dependent deformation mechanism transition in Sn

    Get PDF
    Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from “smaller is stronger” to “smaller is much weaker”. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.National Science Foundation (U.S.) (CMMI-0728069)National Science Foundation (U.S.) (DMR-1008104)National Science Foundation (U.S.) (DMR-1120901)United States. Air Force Office of Scientific Research (FA9550-08-1-0325
    corecore