572 research outputs found
Design and analysis of unloading and tiedown systems. Apollo logistics support systems MOLAB studies Technical report, 1 Oct. - 7 Dec. 1964
Remote control systems for unloading lunar mobile laboratory from lunar excursion module truck - logistic
Recommended from our members
SOFC chromite sintering and electrolyte/air-electrode interface reactions
Air sintering of chromites was investigated in La(Sr)CrO[sub 3], La(Ca)CrO[sub 3], and Y(Ca)CrO[sub 3]. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La[sub 1-x]Sr[sub x]MnO[sub 3]. 5 refs
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A
We present the results of a search for optical model potentials for use in
the description of elastic scattering and transfer reactions involving stable
and radioactive p-shell nuclei. This was done in connection with our program to
use transfer reactions to obtain data for nuclear astrophysics, in particular
for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B
using two (7Be,8B) proton transfer reactions. Elastic scattering was measured
using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about
E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted
and are compared with potentials obtained from a microscopic double folding
model. We use these results to find optical model potentials for unstable
nuclei with emphasis on the reliability of the description they provide for
peripheral proton transfer reactions. We discuss the uncertainty introduced by
the procedure in the prediction of the DWBA cross sections for the (7Be,8B)
reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files
Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing
Advances in artificial intelligence have greatly increased demand for data-intensive computing. Integrated photonics is a promising approach to meet this demand in big-data processing due to its potential for wide bandwidth, high speed, low latency, and low-energy computing. Photonic computing using phase-change materials combines the benefits of integrated photonics and co-located data storage, which of late has evolved rapidly as an emerging area of interest. In spite of rapid advances of demonstrations in this field on both silicon and silicon nitride platforms, a clear pathway towards choosing between the two has been lacking. In this paper, we systematically evaluate and compare computation performance of phase-change photonics on a silicon platform and a silicon nitride platform. Our experimental results show that while silicon platforms are superior to silicon nitride in terms of potential for integration, modulation speed, and device footprint, they require trade-offs in terms of energy efficiency.We then successfully demonstrate single-pulse modulation using phase-change optical memory on silicon photonic waveguides and demonstrate efficient programming, memory retention, and readout of 4 bits of data per cell.Our approach paves the way for in-memory computing on the silicon photonic platform
Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions
The thermodynamics of a disordered planar vortex array is studied numerically
using a new polynomial algorithm which circumvents slow glassy dynamics. Close
to the glass transition, the anomalous vortex displacement is found to agree
well with the prediction of the renormalization-group theory. Interesting
behaviors such as the universal statistics of magnetic susceptibility
variations are observed in both the dense and dilute regimes of this mesoscopic
vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be
sent to [email protected]
Recommended from our members
Advanced materials and electrochemical processes in high-temperature solid electrolytes
Fuel cells for the direct conversion of fossil fuels to electric energy necessitates the use of high-temperature solid electrodes. This study has included: (1) determination of electrical transport, thermal and electrical properties to illucidate the effects of microstructure, phase equilibria, oxygen partial pressure, additives, synthesis and fabrication on these properties; (2) investigation of synthesis and fabrication of advanced oxide materials, such as La{sub 0.9}Sn{sub 0.1}MnO{sub 3}; and (3) application of new analytical techniques using complex impedance coupled with conventional electrochemical methods to study the electrochemical processes and behavior of materials for solid oxide fuel cells and other high-temperature electrolyte electrochemical process. 15 refs., 10 figs., 2 tabs. (BM
Recommended from our members
Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics
A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination
Recommended from our members
Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics
A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination
- …