53 research outputs found

    Cdc5-Dependent Asymmetric Localization of Bfa1 Fine-Tunes Timely Mitotic Exit

    Get PDF
    In budding yeast, the major regulator of the mitotic exit network (MEN) is Tem1, a GTPase, which is inhibited by the GTPase-activating protein (GAP), Bfa1/Bub2. Asymmetric Bfa1 localization to the bud-directed spindle pole body (SPB) during metaphase also controls mitotic exit, but the molecular mechanism and function of this localization are not well understood, particularly in unperturbed cells. We identified four novel Cdc5 target residues within the Bfa1 C-terminus: 452S, 453S, 454S, and 559S. A Bfa1 mutant in which all of these residues had been changed to alanine (Bfa14A) persisted on both SPBs at anaphase and was hypo-phosphorylated, despite retaining its GAP activity for Tem1. A Bfa1 phospho-mimetic mutant in which all of these residues were switched to aspartate (Bfa14D) always localized asymmetrically to the SPB. These observations demonstrate that asymmetric localization of Bfa1 is tightly linked to its Cdc5-dependent phosphorylation, but not to its GAP activity. Consistent with this, in kinase-defective cdc5-2 cells Bfa1 was not phosphorylated and localized to both SPBs, whereas Bfa14D was asymmetrically localized. BFA14A cells progressed through anaphase normally but displayed delayed mitotic exit in unperturbed cell cycles, while BFA14D cells underwent mitotic exit with the same kinetics as wild-type cells. We suggest that Cdc5 induces the asymmetric distribution of Bfa1 to the bud-directed SPB independently of Bfa1 GAP activity at anaphase and that Bfa1 asymmetry fine-tunes the timing of MEN activation in unperturbed cell cycles

    Identification of cDNA Encoding a Serine Protease Homologous to Human Complement C1r Precursor from Grafted Mouse Skin

    Get PDF
    We isolated a cDNA clone from grafted mouse skin that encodes a serine protease homologous to human C1r. The C1r protease is involved in the activation of the first component of the classical pathway in the complement system. In order to identify novel transcripts whose expression is regulated in grafted mouse skin, we first perfomed differential display reverse transcription polymerase chain reaction analysis and obtained 18 partial cDNA clones whose protein products are likely to play an important role in allograft rejection. One of these showed significant sequence homology with human complement C1r precursor. The other clones displayed no homology to any known sequences, however. Northern blot analysis demonstrated that the level of this transcript was upregulated in day 8 postgrafted skin. The full-length cDNA 2121 nucleotides in length obtained from screening a mouse skin cDNA library contained a single open reading frame encoding 707 amino acid residues with a calculated molecular weight of 80,732 Da. Its deduced amino acid sequence revealed an 81% identity and 89% similarity to the human C1r counterpart. In particular, mouse C1r contained His501, Asp559, and Ser656, which were conserved among this group of serine proteases. This protein was thus designated as mouse C1r. We have expressed a truncated fragment of C1r protein without the N-terminal hydrophobic sequence in Escherichia coli and generated a polyclonal antibody against it. Subsequent immunohistochemical analysis confirmed that mouse C1r was significantly expressed 8 d after the skin graft in both allografted and autografted skins, compared with normal skins. These collective data suggest that a component of the complement system, C1r, might contribute to the graft versus host immune responses in mice

    In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure

    No full text
    RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of β-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutininprecipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the Ser41 residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s). © 2014 by the The Korean Society for Biochemistry and Molecular Biology.1

    Biochemistry and structure of phosphoinositide phosphatases

    No full text
    Phosphoinositides are the phosphorylated derivatives ofphosphatidylinositol, and play a very significant role in adiverse range of signaling processes in eukaryotic cells. Anumber of phosphoinositide-metabolizing enzymes, includingphosphoinositide-kinases and phosphatases are involved in thesynthesis and degradation of these phospholipids. Recently,the function of various phosphatases in the phosphatidylinositolsignaling pathway has been of great interest. In thepresent review we summarize the structural insights andbiochemistry of various phosphatases in regulating phosphoinositidemetabolism. [BMB Reports 2013; 46(1): 1-8

    Biomedical application of phosphoproteomics in neurodegenerative diseases

    Full text link

    Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    No full text
    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. © 2016 by the The Korean Society for Biochemistry and Molecular Biology.1

    A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics

    No full text
    RNA polymerase II C-terminal domain phosphatases are newly emerging family of phosphatases that contain FCPH domain with Mg+2-binding DXDX(T/V) signature motif. Its subfamily includes small CTD phosphatases (SCPs). Recently, we identified several interacting partners of human SCP1 with appearance of dephosphorylation and O-GlcNAcylation. In this study, using an established cell line with inducible CTDSPL2 protein (a member of the new phosphatase family), proteomic screening was conducted to identify binding partners of CTDSPL2 in nuclear extract through immunoprecipitation of CTDSPL2 with its associated. This approach led to the identification of several interacting partners of CTDSPL2. This will provide a better understanding on CTDSPL2. © 2016 by the The Korean Society for Biochemistry and Molecular Biology.1
    corecore