2 research outputs found

    Multifunctional Fe<sub>3</sub>O<sub>4</sub>/TaO<sub><i>x</i></sub> Core/Shell Nanoparticles for Simultaneous Magnetic Resonance Imaging and X-ray Computed Tomography

    No full text
    Multimodal imaging is highly desirable for accurate diagnosis because it can provide complementary information from each imaging modality. In this study, a sol–gel reaction of tantalum­(V) ethoxide in a microemulsion containing Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) was used to synthesize multifunctional Fe<sub>3</sub>O<sub>4</sub>/TaO<sub><i>x</i></sub> core/shell NPs, which were biocompatible and exhibited a prolonged circulation time. When the NPs were intravenously injected, the tumor-associated vessel was observed using computed tomography (CT), and magnetic resonance imaging (MRI) revealed the high and low vascular regions of the tumor

    Self-Assembled Fe<sub>3</sub>O<sub>4</sub> Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement

    No full text
    Although different kinds of metal oxide nanoparticles continue to be proposed as anode materials for lithium ion batteries (LIBs), their cycle life and power density are still not suitable for commercial applications. Metal oxide nanoparticles have a large storage capacity, but they suffer from the excessive generation of solid–electrolyte interphase (SEI) on the surface, low electrical conductivity, and mechanical degradation and pulverization resulted from severe volume expansion during cycling. Herein we present the preparation of mesoporous iron oxide nanoparticle clusters (MIONCs) by a bottom-up self-assembly approach and demonstrate that they exhibit excellent cyclic stability and rate capability derived from their three-dimensional mesoporous nanostructure. By controlling the geometric configuration, we can achieve stable interfaces between the electrolyte and active materials, resulting in SEI formation confined on the outer surface of the MIONCs
    corecore