8,115 research outputs found

    SuperChat: Dialogue Generation by Transfer Learning from Vision to Language using Two-dimensional Word Embedding and Pretrained ImageNet CNN Models

    Full text link
    The recent work of Super Characters method using two-dimensional word embedding achieved state-of-the-art results in text classification tasks, showcasing the promise of this new approach. This paper borrows the idea of Super Characters method and two-dimensional embedding, and proposes a method of generating conversational response for open domain dialogues. The experimental results on a public dataset shows that the proposed SuperChat method generates high quality responses. An interactive demo is ready to show at the workshop.Comment: 5 pages, 2 figures, 1 table. Accepted by CVPR2019 Language and Vision Worksho

    Highly Coordinated Gene Regulation in Mouse Skeletal Muscle Regeneration

    Get PDF
    Mammalian skeletal muscles are capable of regeneration after injury. Quiescent satellite cells are activated to reenter the cell cycle and to differentiate for repair, recapitulating features of myogenesis during embryonic development. To understand better the molecular mechanism involved in this process in vivo, we employed high density cDNA microarrays for gene expression profiling in mouse tibialis anterior muscles after a cardiotoxin injection. Among 16,267 gene elements surveyed, 3,532 elements showed at least a 2.5-fold change at one or more time points during a 14-day time course. Hierarchical cluster analysis and semiquantitative reverse transcription-PCR showed induction of genes important for cell cycle control and DNA replication during the early phase of muscle regeneration. Subsequently, genes for myogenic regulatory factors, a group of imprinted genes and genes with functions to inhibit cell cycle progression and promote myogenic differentiation, were induced when myogenic stem cells started to differentiate. Induction of a majority of these genes, including E2f1 and E2f2, was abolished in muscles lacking satellite cell activity after gamma radiation. Regeneration was severely compromised in E2f1 null mice but not affected in E2f2 null mice. This study identifies novel genes potentially important for muscle regeneration and reveals highly coordinated myogenic cell proliferation and differentiation programs in adult skeletal muscle regeneration in vivo

    MCRS2 represses the transactivation activities of Nrf1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nrf1 [p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1], a member of the CNC-bZIP (CNC basic region leucine zipper) family, is known to be a transcriptional activator by dimerization with distinct partners, such as Maf, FosB, c-Jun, JunD, etc. The transcriptional roles of CNC-bZIP family are demonstrated to be involved in globin gene expression as well as the antioxidant response. For example, CNC-bZIP factors can regulate the expression of detoxification proteins through AREs, such as expression of human gamma-glutamylcysteine synthetases (GCS), glutathione S-transferases (GST), UDP-glucuronosyl transferase (UDP-GT), NADP (H) quinone oxidoreductase (NQOs), etc. To further explore other factor(s) in cells related to the function of Nrf1, we performed a yeast two-hybrid screening assay to identify any Nrf1-interacting proteins. In this study, we isolated a cDNA encoding residues 126–475 of MCRS2 from the HeLa cell cDNA library. Some functions of MCRS1 and its splice variant-MSP58 and MCRS2 have been previously identified, such as transforming, nucleolar sequestration, ribosomal gene regulation, telomerase inhibition activities, etc. Here, we demonstrated MCRS2 can function as a repressor on the Nrf1-mediated transactivation using both in vitro and in vivo systems.</p> <p>Results</p> <p>To find other proteins interacting with the CNC bZIP domain of Nrf1, the CNC-bZIP region of Nrf1 was used as a bait in a yeast two-hybrid screening assay. MCRS2, a splicing variant of p78/MCRS1, was isolated as the Nrf1-interacting partner from the screenings. The interaction between Nrf1 and MCRS2 was confirmed <it>in vitro </it>by GST pull-down assays and <it>in vivo </it>by co-immunoprecipitation. Further, the Nrf1-MCRS2 interaction domains were mapped to the residues 354–447 of Nrf1 as well as the residues 314–475 of MCRS2 respectively, by yeast two-hybrid and GST pull-down assays. By immunofluorescence, MCRS2-FLAG was shown to colocalize with HA-Nrf1 in the nucleus and didn't result in the redistribution of Nrf1. This suggested the existence of Nrf1-MCRS2 complex in vivo. To further confirm the biological function, a reporter driven by CNC-bZIP protein binding sites was also shown to be repressed by MCRS2 in a transient transfection assay. An artificial reporter gene activated by LexA-Nrf1 was also specifically repressed by MCRS2.</p> <p>Conclusion</p> <p>From the results, we showed MCRS2, a new Nrf1-interacting protein, has a repression effect on Nrf1-mediated transcriptional activation. This was the first ever identified repressor protein related to Nrf1 transactivation.</p

    EFFECTS OF LEISURE SPORTS PARTICIPATION PERIOD ON BALANCE AND THE LOWER EXTREMITY ASYMMETRY

    Get PDF
    The aim of this study was to investigate the effect of the sports participation on balance measurements and lower extremity symmetry. Eighty healthy middle-aged adults (male 35, women 45) were participated in this study. COP related variables were selected for both double and single leg standing as center of pressure anterior posterior (COP-AP) and medial lateral (COP-ML) displacement, center of pressure mean velocity (COP-MV), center of pressure area (COP-Area), and the symmetry index (SI) of dominant and non-dominant leg. Only the COP-MV showed statistically difference for both double and single leg standing test. However, no significant differences were observed for single leg standing asymmetries. As a result, long term sports participation has positive effects on balance which can be helpful to prevent falls in middle-aged adults

    Existence of Nonoscillatory Solutions for a Third-Order Nonlinear Neutral Delay Differential Equation

    Get PDF
    The aim of this paper is to study the solvability of a third-order nonlinear neutral delay differential equation of the form {α(t)[β(t)(x(t)+p(t)x(t−τ))′]′}′+f(t,x(σ1(t)),x(σ2(t)),…,x(σn(t)))=0, t≥t0. By using the Krasnoselskii's fixed point theorem and the Schauder's fixed point theorem, we demonstrate the existence of uncountably many bounded nonoscillatory solutions for the above differential equation. Several nontrivial examples are given to illustrate our results
    • …
    corecore