2,833 research outputs found
Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process
Recommended from our members
Competition between B-Z and B-L transitions in a single DNA molecule: Computational studies
Under negative torsion, DNA adopts left-handed helical forms, such as Z-DNA and L-DNA. Using the random copolymer model developed for a wormlike chain, we represent a single DNA molecule with structural heterogeneity as a helical chain consisting of monomers which can be characterized by different helical senses and pitches. By Monte Carlo simulation, where we take into account bending and twist fluctuations explicitly, we study sequence dependence of B-Z transitions under torsional stress and tension focusing on the interaction with B-L transitions. We consider core sequences, (GC)(n) repeats or (TG)(n) repeats, which can interconvert between the right-handed B form and the left-handed Z form, imbedded in a random sequence, which can convert to left-handed L form with different (tension dependent) helical pitch. We show that Z-DNA formation from the (GC)(n) sequence is always supported by unwinding torsional stress but Z-DNA formation from the (TG)(n) sequence, which are more costly to convert but numerous, can be strongly influenced by the quenched disorder in the surrounding random sequence.National Research Foundation NRF-2012 R1A1A3013044 NRF-2014R1A1A2055681NRF-2012R1A1A2021736IBS-R023-D1NRF-2015R1A2A2A01005916Chemistr
Reliability Assessment of Low-Power Processor Packages for Supercomputers
??????????????? ???????????? ?????????????????? ????????? ????????? ???????????? ?????????, ?????????????????? ????????? ??????????????? ???????????? ?????????????????? ??????????????? ??????????????? ????????? ????????????. ??????????????? ????????? ?????? ?????? ??????????????? ???????????? ????????? ????????? ??????????????? ????????? ??????????????? ?????????????????? ???????????? ?????? ??????????????? ????????? ?????????????????? ?????? ?????????, ?????????????????? ????????? ????????? ??? ??????. ??? ????????? ??????????????? ?????? ????????? ???????????? ????????? ???????????? ???????????? ????????? ???????????????. ?????? ????????????, ???????????? ??? ????????? ????????? ?????? ????????? ???????????? ???????????? ?????? ?????????????????? ?????? ???????????? ???????????????. ??????-?????? ????????? ???????????? ?????? ???????????? ????????? ????????? ??????????????? ????????? ???????????????. ?????? ???????????? ??????????????? ???????????? ?????? ???????????? ????????? ???????????? ????????? ????????? ?????? ????????? ???????????? ???????????? ??????????????? ??? 3??? ????????????????????????. ?????? ????????? ???????????? ????????? ???????????? ???????????? ??????????????? ???????????? ????????? ???????????????.ope
Investigation of a Gas Hydrate Dissociation-Energy-Based Quick-Freezing Treatment for Sludge Cell Lysis and Dewatering
A gas Hydrate dissociation-energy-based Quick-Freezing treatment (HbQF) was applied for sewage sludge cell rupture and dewatering. Carbon dioxide (CO2) and water (H2O) molecules in sewage create CO2 gas hydrates, and subsequently the sludge rapidly freezes by releasing the applied pressure. Cell rupture was observed through a viability evaluation and leachate analysis. The decreased ratios of live cell to dead cells, increased osmotic pressure, and increased conductivity showed cell lysis and release of electrolytes via HbQF. The change in physicochemical properties of the samples resulting from HbQF was investigated via zeta potential measurement, rheological analysis, and particle size measurement. The HbQF treatment could not reduce the sludge water content when combined with membrane-based filtration post-treatment because of the pore blocking of fractured and lysed cells; however, it could achieve sludge microbial cell rupture, disinfection, and floc disintegration, causing enhanced reduction of water content and enhanced dewatering capability via a sedimentation post process. Furthermore, the organic-rich materials released by the cell rupture, investigated via the analysis of protein, polysaccharide, total organic carbon, and total nitrogen, may be returned to a biological treatment system or (an) aerobic digester to increase treatment efficiency
Urine-NMR metabolomics for screening of advanced colorectal adenoma and early stage colorectal cancer
Although colorectal cancer (CRC) is considered one of the most preventable cancers, no non-invasive, accurate diagnostic tool to screen CRC exists. We explored the potential of urine nuclear magnetic resonance (NMR) metabolomics as a diagnostic tool for early detection of CRC, focusing on advanced adenoma and stage 0 CRC. Urine metabolomics profiles from patients with colorectal neoplasia (CRN; 36 advanced adenomas and 56 CRCs at various stages, n = 92) and healthy controls (normal, n = 156) were analyzed by NMR spectroscopy. Healthy and CRN groups were statistically discriminated using orthogonal projections to latent structure discriminant analysis (OPLS-DA). The class prediction model was validated by three-fold cross-validation. The advanced adenoma and stage 0 CRC were grouped together as pre-invasive CRN. The OPLS-DA score plot showed statistically significant discrimination between pre-invasive CRN as well as advanced CRC and healthy controls with a Q2 value of 0.746. In the prediction validation study, the sensitivity and specificity for diagnosing pre-invasive CRN were 96.2% and 95%, respectively. The grades predicted by the OPLS-DA model showed that the areas under the curve were 0.823 for taurine, 0.783 for alanine, and 0.842 for 3-aminoisobutyrate. In multiple receiver operating characteristics curve analyses, taurine, alanine, and 3-aminoisobutyrate were good discriminators for CRC patients. NMR-based urine metabolomics profiles significantly and accurately discriminate patients with pre-invasive CRN as well as advanced CRC from healthy individuals. Urine-NMR metabolomics has potential as a screening tool for accurate diagnosis of pre-invasive CRN.Peer reviewe
Structural dynamics and divergence of the polygalacturonase gene family in land plants
A distinct feature of eukaryotic genomes is the presence of gene families. The polygalacturonase (PG) (EC3.2.1.15) gene family is one of the largest gene families in plants. PG is a pectin-digesting enzyme with a glycoside hydrolase 28 domain. It is involved in numerous plant developmental processes. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Here, phylogenetic and gene structure analysis of PG genes in algae and land plants revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. PG genes in land plants contained 15 homologous intron blocks and 13 novel intron blocks. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. These findings demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intronic loss. Moreover, they underscore the importance of intron gain and loss in genomic adaptation to selective pressure
In-situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser
The remarkably high superconducting transition temperature and upper critical
field of iron(Fe)-based layered superconductors, despite ferromagnetic material
base, open the prospect for superconducting electronics. However, success in
superconducting electronics has been limited because of difficulties in
fabricating high-quality thin films. We report the growth of high-quality
c-axis-oriented cobalt(Co)-doped SrFe2As2 thin films with bulk
superconductivity by using an in-situ pulsed laser deposition technique with a
248-nm-wavelength KrF excimer laser and an arsenic(As)-rich phase target. The
temperature and field dependences of the magnetization showing strong
diamagnetism and transport critical current density with superior Jc-H
performance are reported. These results provide necessary information for
practical applications of Fe-based superconductors.Comment: 8 pages, 3figures. to be published at Appl. Phys. Let
Waveguide-Type Head-Mounted Display System for AR Application
Currently, a lot of institutes and industries are working on the development of the virtual reality and augmented reality techniques, and these techniques have been recognized as the determination for the direction of the three-dimensional display development in the near future. In this chapter, we mainly discussed the design and application of several wearable head-mounted display (HMD) systems with the waveguide structure using the in- and out-couplers which are fabricated by the diffractive optical elements or holographic volume gratings. Although the structure is simple, the waveguide-type HMDs are very efficient, especially in the practical applications, especially in the augmented reality applications, which make the device light-weighted. In addition, we reviewed the existing major head-mounted display and augmented reality systems
Effects of paramagnetic fluctuations on the thermochemistry of MnO (100) surfaces in the oxygen evolution reaction
We investigated the effects of paramagnetic (PM) fluctuations on the
thermochemistry of the MnO(100) surface in the oxygen evolution reaction (OER)
using the "noncollinear magnetic sampling method \textit{plus} "
(NCMSM). Various physical properties, such as the electronic structure,
free energy, and charge occupation, of the MnO (100) surface in the PM state
with several OER intermediates, were reckoned and compared to those in the
antiferromagnetic (AFM) state. We found that PM fluctuation enhances charge
transfer from a surface Mn ion to each of the intermediates and strengthens the
chemical bond between them, while not altering the overall features, such as
the rate determining step and resting state, in reaction pathways. The enhanced
charge transfer can be attributed to the delocalized nature of valence bands
observed in the PM surface. In addition, it was observed that chemical-bond
enhancement depends on the intermediates, resulting in significant deviations
in reaction energy barriers. Our study suggests that PM fluctuations play a
significant role in the thermochemistry of chemical reactions occurring on
correlated oxide surfaces.Comment: Maintext: 15 pages, 3 figures 2 tables; SI: 3 pages, 2 figure
- …