12,304 research outputs found

    Molecular single-particle excitations in heavy-ion reactions involving deformed light nuclei

    Get PDF
    Two-center level diagrams for the neutron orbitals in the scattering of 16O on 25Mg and of 17O on 24Mg are calculated by using a deformed potential for 24,25Mg. Possible consequences of the nuclear Landau-Zener mechanism, namely the promotion of nucleons at avoided level crossings, and of the rotational coupling between crossing molecular single-particle orbitals are studied for inelastic excitation and neutron transfer. The important excitation and transfer processes, which are enhanced by the promotion process and the rotational coupling, are presented. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, asymmetric two center shell model, single particle excitation, deformed nuclei

    Theory of nucleon transfer in the dynamical two-center shell model

    Get PDF
    The theory of nucleon transfer in heavy ion reactions is formulated on the basis of the molecular particlecore model for a system consisting of two cores and one extracore nucleon. The extracore nucleon is described by the molecular wave functions of the asymmetric two-center shell model. The cores, which are assumed to be collectively excitable, are treated with vibrator-rotator models. Potentials for shape polarization are contained in the asymmetric two-center shell model and the interaction between the cores. The excitation and transfer of the extracore nucleon is induced by the radial and rotational couplings. The coupled channel equations, which include the recoil effects in first approximation, are derived in a form suitable for numerical calculations of cross sections. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, two-center shell model, collective and single-particle excitation

    Quasimolecular states in the 12C-12C system

    Get PDF
    Quasimolecular resonance structures in the 12C-12C system are studied in the framework of the coupled channel formalism in the energy range Ec.m.=5-14 MeV. The influence of the coupling of the first excited 2+ state in 12C on the resonance structures is investigated by choosing various types of coupling potentials. The intermediate structures in the reflection and transition coefficients and cross sections can be interpreted with the double resonance mechanism. NUCLEAR REACTIONS 12C(12C, 12C), quasimolecular states, coupling potentials, coupled channel calculations for σ(θ)

    Problem of antisymmetrization in heavy-ion scattering

    Get PDF
    A general formalism for the scattering of heavy ions, which is especially convenient to study the antisymmetrization effects, is developed. Antisymmetrization effects are investigated by expanding the completely antisymmetrized wave function according to the number of exchanged nucleons. The particle-core model for the scattering of nuclei with loosely bound nucleons is presented. A formula for the additional contribution to the effective potential due to antisymmetrization effects is obtained by calculating the expectation value of the Hamiltonian with intrinsic wave functions. Application of the formalism is illustrated for the 14N + 14N scattering problem and its usefulness is demonstrated

    Determination of the effective 12C + 12C potential from the sub-Coulomb single-particle resonances

    Get PDF
    The sub-Coulomb resonances observed in the total reaction yield of the 12C + 12C system at 4.9, 5.6, and 6.2 MeV are explained as single-particle resonances. The "true" effective 12C + 12C potential is determined directly as the real potential which reproduces best the position and the spacing of the observed sub-Coulomb resonances. This potential is found from a parametrization of the two limiting adiabatic and sudden potentials

    Signatures of molecular single-particle states by level crossings in heavy ion collisions

    Get PDF
    In heavy ion collisions, the molecular single-particle motion may cause specific structures in the energy dependence of the cross sections which arise by the promotion of nucleons at level crossings according to the Landau-Zener excitation mechanism. In order to examine this effect in asymmetric heavy ion collisions, we have calculated level diagrams of the two-center shell model for the target projectile combinations 13C + 16O and 12C + 17O and analyzed with respect to inelastic excitation and neutron transfer. We select certain reactions as possible candidates for showing enhanced cross sections for nucleon excitation and transfer due to real and avoided level crossings near the Fermi level

    Inelastic excitation and neutron transfer in the 13-13C scattering with the molecular particle-core model

    Get PDF
    The molecular particle-core model is applied to the scattering of 13C on 13C. The model divides the 13C+ 13C system into two 12C cores and two valence neutrons. The valence neutrons are described with molecular eigenfunctions of the symmetric two-center shell model. Coupled channel calculations are carried out for the inelastic single and mutual excitation of the first (1/2+ state of 13C and the neutron transfer to the 12C+14C system. The results reproduce the experimental data. The analysis of the S matrix shows that the gross structure of the transfer excitation function is related to resonances in the relative motion of the elastic and transfer channels
    • …
    corecore