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The theory of nucleon transfer in heavy ion reactions is formulated on the basis of the molecular particle-
core model for a system consisting of two cores and one extracore nucleon. The extracore nucleon is
described by the molecular wave functions of the asymmetric two-center shell model. The cores, which are
assumed to be collectively excitable, are treated with vibrator-rotator models. Potentials for shape
polarization are contained in the asymmetric two-center shell model and the interaction between the cores.
The excitation and transfer of the extracore nucleon is induced by the radial and rotational couplings. The
coupled channel equations, which include the recoil effects in first approximation, are derived in a form

suitable for numerical calculations of cross sections.

NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer,
molecular wave functions, two-center shell model, collective and single-
particle excitation.

I. INTRODUCTION

Although collective molecular resonances have
been observed in various heavy ion systems, such
as 2C +!2C, molecular single-particle effects are
not well ‘established (for a review see Ref. 1). In
this paper we study molecular single-particle ef-
fects in the scattering of nuclei which can be de-
composed into a core and a loosely bound nucleon.
For simplicity, we restrict our investigations to
systems with one extracore nucleon. Examples
of such systems are '2C +!3C for identical cores
and 3C +1%0 for different cores. The main pur-
pose of our paper is to derive the elements for
the molecular description of the excitation and
transfer of the extracore nucleon.

The theory of nuclear molecular single-particle
effects was first initiated with the symmetric and
asymmetric two-center shell models? (STCSM,
ATCSM) which are mostly applied to calculate
real nucleus-nucleus potentials.® Dynamic treat-
ments of molecular single-particle motion in
nucleus-nucleus collisions were studied by Park
etal.* von Oertzen and Norenberg,® Becker et al.,’
Matveenko and Lovas,” and Terlecki et al.® Also,
molecular wave functions were used to describe
polarization effects in proton transfer reactions.®

One major difference between our theory and the
work in Refs. 6 and 7 lies in the different definition
of the rotating coordinate systems. In Refs. 6

and 7, one defines the z’ axis of the rotating sys-
tem by the direction of the core-core distance.
This definition is commonly used in atomic phys-
ics where the rotating system is fixed by the po-
sition of the nuclear centers. However, in nu-
clear physics the mass ratio between the extra-
core nucleon and the cores does not allow us to
equate the core-core distance with the relative
coordinate. Therefore, in Refs. 4 and 8 we have
defined the position of the intrinsic coordinate
system with the true relative coordinate, and
consequently avoided all the complications aris-
ing in the asymptotic behavior of the wave func-
tions as discussed in Refs. 6 and 7 where the
core-core distance has been used.

Further, we assume that the center distance in
the TCSM should be taken as the relative coordi-
nate instead of the core-core distance. This
assumption becomes most obvious for an increas-
ing number of extracore nucleons. The TCSM
potential is generated as the mean field of all the
nucleons and not just the core nucleons only.
Therefore, the center distance has to be related
to the relative coordinate of all the nucleons.

This work is a generalization of the paper by
Terlecki et al.® on the *C-13C reaction in that the
extracore nucleons can be transferred and that
the cores can be collectively excited. Both ef-
fects, which we have not yet studied, play a role
in the *C-'3C reaction. In order to avoid the
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complexity in the theory due to the antisymmetri-
" zation of the extracore nucleons, we have re-

stricted our formulation to the case of one extra-

core nucleon only. However, this assumption

is not very restrictive and can be removed

straightforwardly.

In Sec. II we formulate the coordinates and the
Hamiltonian describing the two cores and the
loosely bound nucleon, The dynamics of the cores
is treated by collective surface coordinates which
have to be properly defined as the nuclei overlap.
Hence, the low-energy spectra of the cores are
explained in the framework of vibrator or rota-
tor-vibrator models. Analogously to the strong
coupling model (Nilsson model) we assume in
addition that the ATCSM potential depends on the
collective surface coordinates, Therefore, the
model contains two types of polarization of the
nuclear shapes. The first type arises due to the
overlap of the nuclei and depends on the relative
distance of the nuclei, whereas the second type
is caused by collective transitions in the cores
via the dynamics of the scattering process. Since
the relative coordinate between the nuclei changes
after the transfer of the extracore nucleon, the
Hamiltonian has different forms for the direct
and transfer channels.

Section III presents the wave functions, their
asymptotic behavior and symmetries for identical
cores. In Sec. IV we construct the coupled chan-
nel equations for the relative wave functions. The
coupled equations are written very explicitly so
that practical numerical calculations can be
started. For this purpose we expand the recoil
terms up to the first order in the difference be-
tween the relative coordinates of the two frag-
mentations. It is shown that the radial and ro-
tational couplings are important mechanisms
for the excitation and transfer of the extracore
nucleon.

II. THE MODEL

We consider the scattering of a system of two
nuclei consisting of two cores with C, and C,

n

FIG. 1. Definition of the various coordinates of the
particle-core model.

nucleons and one extracore nucleon. The extra-
core nucleon can be transferred between the '
cores. Such systems are, for example, '°C +!2C,
13C +1%0, and ?C +'"0. For simplicity we re-
strict the theory to systems with one extracore
nucleon. The extension to systems with more
extracore nucleons is straightforward, though
one needs to antisymmetrize the wave functions.
of the extracore nucleons. The following reac-
tion channels are possible:

s=1 (C,;+1)+C,,

(C, +1)*+C,,
(C,+1)+C,
(C,+1)*+CF,
s=2 C, +(C,+1),
Ck+(Cy+1),
C,+(Cy+1)*,
Cr+(Cy+1)*,

1

(2)

The channels with s =1 and s =2 consist of nu-
clei in the fragmentations A, =C, +1, A,=C, and
A, =C,, A,=C,+1, respectively. In the excited
states of the nuclei both the cores dnd the extra-
core nucleon may be excited. The excited states
of the cores are assumed to be describable by
collective models such as rotation or vibration
models.!® The states of the extracore nucleon
are obtained from the asymmetric two-center
shell model suitable for the fragmentations with
A, and A, nucleons.'

A. Coordinates

We denote the laboratory coordinates of the
core centers with ﬁcl and ﬁcz and the laboratory
coordinate of the extracore nucleon by T,. As
shown in Fig. 1, we introduce the center-of-mass
coordinate of the system with A (=C, +C, +1)
nucleons,

-

1 = o .
Rem. = A (C1RC1 +CyRe, +r1) y (3)

the coordinate of the extracore nucleon measured
with respect to the center of mass

-

Y’c.m. =—fl. ~Rem. s (4)

and the relative coordinates between the nuclear
centers inthe channels with s =1 and s =2,

= 1 = . -

Rs-y = E;:T((’chx +T,) =R, , (5a)

= = 1 - -

R, =R, - m(CZR” +T,). (5b)
2 N

Between the coordinates defined in Eqs. (4) and
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(5), the following relations hold:

. 1

R, = (—C—+—1)—-[(C - C,)R, +AT,. ], (6a)
- - 1 - -

R =R = g7 (=GR + Afen ] (6D)

For equal cores C, =C, =C these formulas reduce
to a single expression:

- - 2C+1 .
R, = *CaC em | (7)

In the calculation of the matrix elements the
volume element has to be inserted as

1

ar, (CJ 1) PR, PRAF . (8)
S

The dynamics of the cores is described by mul-
tipole coordinates of') and ai% which define the
shape of the cores 1 and 2 with respect to the
laboratory axes.!® In most applications the
quadrupole deformation of the nuclear shapes is
the important one which can be treated in the
framework of the vibrator or rotator models.
Restricting the further considerations to quadru-
pole shapes only, we define the nuclear surfaces
asymptotically by

&; Ro,(1+2a(’)Yu(9,,<p)>, i=1,2. (9)

Here, R, denotes the nuclear radii. In the overlap
region the nuclear surface has to be defined in
accordance with the corresponding equipotential
surface of the asymmetric two-center shell

model. The deformation of this equipotential
surface can be related to the coordinates af!) as
shown for the symmetric two-center shell model
by Fink et al.'?

B. Kinetic energy

The kinetic energy is given in the center-of-
mass system by

2 X '
+Tcoll (ﬂ(ztt))”TcAm,- (10)

. P
T=fc1+TCz+§JA7

The kinetic energies are those of the centers of
the cores, of the extracore nucleon, and of the
collective degrees of freedom of the cores. We
transform the Hamiltonian for each fragmenta-
tion s to a different rotating coordinate system
with the z’ axis in the direction of ﬁs. The ro-
tating coordinate systems are fixed with respect
to the laboratory system by the Euler angles ¢,
6, (spherical polar angles of R, ), and ¥;. The
angle ¥; around the 2’ axis has no physical sig-
nificance and does not affect the results. After
the transformation to the rotating coordinate

systems the kinetic energy, given in (10), may be
written for the fragmentation s as

I 1( __l__>*,2
THTS__Z;.L',Rs(aRs )R+2M 1-C1/Pem

1 = = ;
+ 5 05 9 99) =3 = Tean (), gl )?

+Teon (M), (11)
where
p-G . G0
“A vz’ 2 A dz!
3= (- SRE) XBln 3,

- - C, - -
Jg = (r(,:,m, + ZJ'Rzez' X p’cm."‘s, ’

= (C, +1)C,M/A , 1, =Cy(C, +1)M/A .

Here, f, 33, and J ool are, respectively, the
operators of the total angular momentum including
the nucleon spins, the angular momentum of the
extracore nucleon measured with respect to the
nuclear centers, andthe total angular momentum
of the quadrupole degrees of freedom., The
angular momenta and the linear momenta Pl
and 11’(” are written with respect to the rotating
coordinate system. The reduced masses for the
fragmentation s are abbreviated by us with M as
the nucleon mass. The details of the transforma-
tion to the rotating coordinate system are given in
Refs. 8 and 10.

C. Hamiltonian

The Hamiltonian for the fragmentation s is
assumed to be as follows:

H=Tg+Vy (o
+iW (R, 12, E) +V (R0, Dlms 5/, W, Ry) .
(12)

9)+U(§cx _iiCZ’ ('))

The potential Veon is the asymptotic potential
energy of the quadrupole degrees of freedom
(Rs—~ ). The potential U represents the inter-
action between the cores and depends only on the
core-core separation distance and the deforma-
tion parameters of the nuclear surface. The ab-
sorptive potential W is due to all the channels
which are not explicitly treated and is assumed
to be a function of the relative coordinate, the
total angular momentum and energy. The fifth
term V is the potential of the asymmetric two-
center shell model (ATCSM) in the fragmenta-
tion s.

For the core-core potential we make a multi-
pole expansion up to first order of the deforma-~ -
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tion parameters of?):

U= Uo(chcz)JfZ[l M (Rerca) Y

+I( (R0102) (2)] M(QCICz) (13)

In prinicple, it is possible to describe the nu-
cleus-nucleus motion by the core-core distance
and single-particle coordinates as shown by
Becker et al.® But such a procedure leads to
problems in the asymptotic behavior of the wave
functions for large internuclear distances. Only
with the true relative coordinates ﬁs does the
translational motion decouple asymptotically from

the intrinsic nuclear degrees of freedom. There-
J
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fore, we describe the nucleus-nucleus motion
with the relative coordinates ﬁs, defined in Eqs.
(5). But then we have to express the core-core
potential as a function of the relative coordinates.
The core-core distance can be written as

ﬁcwz =§Cl - ﬁCz = (1 + CZ/CIA)R: _.]?CJTI./C]_
=(1+C,/C,AR, +Tcm/C, .
| (14)
Since ﬁcl -Rg, =~ ﬁl o ﬁz for C,,C,>1, we may
expand the potential in the difference between the
relative and core-core distance. For the frag-

mentation s =1 we obtain in first order of the
difference

1 (G KB 5\ A1) 7(2) A2)
s=1 1+C ARI c.m. aRl UO(R1)+ 4_.” [12 (Rl)azo 12 (Rl)azo ]

[(1‘*’(&) KV LI P R AP Yo (s Pl )

L1
C].Rl c. me

UV R) Y +I P R) 2 Y, (95m, 9lm)]. (15)

A similar expression results for U,.,. In most applications it is sufficient to replace the core-core
distance in Eq. (13) by the relative coordinates ﬁl and ﬁz. The additional terms in Eq. (15) are due to
the difference between the center-of-mass coordinates of the nuclei and those of the cores and are small
because of the common factor 1/C,.

It is presumed that the potential V of the ATCSM in Eq. (12) represents the mean field of all nucleons
and, therefore, is generated by the core nucleons and the extracore nucleons. Hence, it is realistic to
assume that the centers of the ATCSM coincide with the centers of mass of the nuclei in the fragmentations
s =1,2. In the rotating coordinate systems the centers lie at

C C
s=1: Z'=—2R1;—'—Lth1,‘
(16)
C C
s=2: z'=—2—+—1R2;——’-R2.

The potential of the ATCSM can be written, up to terms linear in the deformation coordinates az(”, as

Ve=Voo(Flum, R)+V 2 o+ Vg o=k }:(g(zc.m. Yoyt + gg(=2lm.) 2 ) Y (9hmy Pl ) (T grad’)V oo Feimy Rs)

()
with
’ 1 for z>0
£:() ={ ’
0 for 2 x0.
Here V2, is an I?-type potential and V;, ; the spin-orbit potential. Their precise definitions are given in
Ref. 11, where the details about the potential V ; are also discussed. The last term couples the single-
particle motion with the quadrupole degrees of freedom. The coupling constants 2; may be obtained by
fitting the asymptotic energy spectra of the nuclei. The function g,(z) is defined as a smeared-out step

function in order to have a smooth transition of the nuclear surface from the coordinates az'(u‘) to a;ff) at
the plane z’=0. The Hamiltonian (12) can be rewrltten as follows:

H(s)=Hen (155, 0\") +hprcon (Flm, 8, Re) +Ts +Ug(Ry) +iW (R, T2, E)+me(Rs, i, F ) (18)
Here, we have used the abbreviations:

Hegy =Hogy (M0, 0P +H ooy (152, afi?), (19)
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1 - -
hATCSM = ZM (1 - Cs+1)p,cz,mf*'vos(rcl.m-’Rs)+V12,s+Vls,s, (20)

~ A > 1 -
P D_R —— -
Ts Zp.sRs'(aRs DR+ g g de s

-
2
- Jcoll ) ’

(21)

1/C 3 , 1/(C,.
EI<—AZR1-Zém)§R_1](4_n) [I(l)(Rl)al(l) 1(2)(R) (2)] Cl<fR1_zé'm'>dU0(Rl)/de

Wcoup(s—1)=[1+ >
" ‘/(5:';”" [(1(1)(R )aé(ll) 1 (2)(R )aI(Z))Y 1Oy @hm)
1

+(1(1)(R )al(l) +I(2)(R )QI(Z))YL(‘ch,(Pcm)]

—k; Z(gl(zcm, 5:,1)+g1(—z’ ‘aé(uZ)

Analogously, we have W (s =2). Mainly the
operators 7, and W, couple the various degrees
of freedom. We note that the Hamiltonian (18) de-
pends on the special fragmentation s.

II. WAVE FUNCTIONS

The wave functions for solving the scattering
problem Hy = Ey are given in the laboratory sys-
tem by the ansatz (Park et al.*)

Yru= D Roarrt R Y195, 0) @@5as]i1. (23)
sald
Here R, ;1(Rs) represents the wave function de-
scribing the relative motion of the colliding nuclei,
and s =1, 2 denotes the fragmentation and o a set
of intrinsic quantum numbers. Further, I, [, and
J are the quantum numbers of the total angular
momentum, the orbital angular momentum, and
the channel spin, respectively. The intrinsic wave
function ¢, ;4 describes the collective degrees
of freedom and the motion of the extra particle.
The transformation of the intrinsic wave function
@ 5o gy to the rotating coordinate system is defined
by the relation

— J x
q>stM_ Z DMM
M

The parentheses around the quantum numberJ of the
channel spin indicate that $hasa good quantum num-
berdJ for large separations of the nucleionly. When
the nuclei overlap, the extracore nucleon moves
in a rotating deformed potential well and, there-
fore, has no good angular momentum with respect
to any center. We use Eq. (24) as the definition
of the intrinsic wave function for arbitrary inter-
nuclear distances. Inserting Eq. (24) into Eq. (23)

'((Ps; sy ‘ps)‘.i;sat(J)M' . (24)

we obtain
20 +1
lpIM“ ZRsaIJI R )7' ( )
sald

XZ (LOTM LM D'y (@5, 95 Vs)Psa yuar »

(25)

)V (O, @l ) (Fhm. grad’)V o (m., Rs) . (22)

The last equation has been further divided by
1/¥27 in order to include the integration over the
irrelevant Euler angle ¥, in all matrix elements.
Asymptotically (Rs— =) the radial wave functions
approach the usual linear superposition of the
Coulomb functions G, and F; multiplied by the S
matrix:

RppgRe)=J1(Re)0zz,~ OL(RS)SILLO ’
1 Lo .
Ji, 0173 I exp(xi0,)(G,FiF,), (26)
L s

L=(s,0ld).

In the following, we reorder the wave functions
used in Eq. (25) into another set of functions
which are more convenient for the rotating co-
ordinate system:

bru = E Rii(Rs)Priu
L

= Z Rt (Rs)gru - (217)
K

Here the orthonormalized channel functions are
defined as

20+1
PrLiu=t (8 z ) 2, (sl
G

x =
XDﬁdM'q)sa(J)M' .

The index K denotes a new set of quantum num-
bers, completely defining the wave functions
Yrry which we will specify in the next sections.
The transformation matrix between the two rep-
resentations is assumed to be independent of the
relative coordinate:

AILK = <§0L1MI¢KIM> . (28)

The S matrix in the L representation, which is
needed in the calculation of the cross sections,
can be obtained from the relative wave functions
Ry in the K representation by two methods:

(a) One defines the asymptotic behavior of



Ry by that of R, given in Eq. (26):
Rezg= Y (ANg5 Wbz =055, ), (29)
L

(b) One defines the asymptotic behavior of Ry;
differently by generalized Coulomb functions and
the S matrix, both written in the K representation:

RKKOI = KZ, (anf' 51{'1{0 - O;{K'Sf('lfo) ’ (30)
with
Iy = Z AH G JimiALL, : (31a)
Okr = 9, (AN,3" 048" Al . (31b)
L

The functions J fm’ and Of{,{: become diagonal in
K for R—<, for example, J%p(R—~©)=i""J 5xx .
The matrix in the L representation is finally cal-
culated by the transformation

Sir = ) ALxSke AN . (32)
KK'

The representation for the wave functions in (27)
should be chosen as the set of states classified by
K which are selectively excited via the coupling
potentials (22). For example, the main coupling
potential for the quadrupole vibrations is propor-
tional to a’(‘) and, therefore, excites only vibra-
tions with M =0 with respect to the intrinsic z’
axis. Therefore, it is useful to classify the chan-
nel wave functions according to the quantum num-
ber of z’ component of angular momentum.

A. Intrinsic wave function for different cores

In the case of C, # C, we do not have to sym-
metrize the wave function for the exchange of the
cores. The antisymmetrization of the extracore
nucleon with the cores is currently neglected.
The intrinsic wave function &SQ(J)M can be ex-
pressed as a product of the eigenfunctions of
Hyyy i and Zarcsm . These eigenfunctions are de-
fined by the eigenvalue equations:

Heon,i¥s Lu®) =Eg t¥Pu@), =1,2 (33)
hATCSM (—fé-m» S)Rs)(psh(j)m(;t{»m-; Rs)

“€s7«(J)lmI(R )‘PsMJ)m( cm.y s)- (34)

The wave functions ¢ 4, classified by the
quantum number B and angular momentum L, de-
scribe the collective states of the core nuclei.
The matrix elements of the operators a;(,f) be-
tween these states can be reduced to the E2-
transition probabilities.'®* These transition proba-
bilities may be obtained from measurement or
directly calculated with realistic nuclear models
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chosen for H ., (for collective nuclear models see
Refs. 10 and 14).

The wave functions @ q(;)m of the ATCSM de-
pend on the fragmentation s and form an ortho-
normal set for each value of s. The parameters
of hatcsm have to be so adjusted that the calcu-
lated asymptotic single-particle levels agree
with the experimental levels of the nucleus with
A¢=C,+1 nucleons. The difference in the mass
asymmetries between the two fragmentations is
given by :

N =1,=(C,=C,+1)/A-(C,-C,-1)/A

=2/A. (35)
Since this difference is small, we may insert an
averaged mass asymmetry 7 =(C, = C,)/A into the
ATCSM. Then the Hamiltonian of the ATCSM
and their eigenfunctions and eigenvalues would be
independent of the fragmentation s. This ap-
proximation can be applied in all cases where the
asymptotic spectra of the nuclei with A;=C,+1
nucleons are sufficiently well reproduced by a
single set of parameters of the ATCSM. In the
following, however, we formulate the theory
without such an approximation.

With the wave functions defined in Egs. (33) and
(34) we construct the following intrinsic wave
functions &:

8o u=[[¥8,2,(1)®@1a5) (Fim, R)] 1@ Yy 1 ()] 57,
la=(8L,,N,I,; L, =1,), (36a)
Dya(ryu= [¥8,2,(1) ® [¥6,2,(2) ® a5y (Téim., R, )L,
2a=(B,L, =1, ;BLy, N, 1,). (36b)

For large separations the intrinsic wave func-
tions (36) describe the states of the individual
nuclei with spins I, and /,. The coupled equations
are conveniently obtained with the following ortho-
normalized basis functions:

2I +1\ 2 /%
Zﬁbl{IM :(—é——ﬂz‘_> DLM'((psy 19s"/)s)

X[‘pﬂllq(l)®Zpﬁzbz(z)]/w'-mgosk(j)m(rcm) s),
K:(st 931[‘1’ Bsz, A’Sk]m)- (37)

They are eigenfunctions of the Hamiltonian:

1
[Hcoll +hATCSM + m(lz —12'2 "'Jcoll2

_Jcoll.l’z)]ZpKIM=EKI¢K1M: (38a)
Ex1(Rs) = Egyp, +Egy, + €y imi(Rs)
n?
+ m I +1)=M"? +AA +1)=(M' = m)?).
(38b)
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The transformation needed for the computation of the S matrix and defined in Eq. (28) is given
with the wave functions (37) as a sum over Clebsch-Gordan coefficients, which can easily

be summed up:

20 +1

B o 2
AILK =z-x(IOJM'lIM,) ( aI+1 ) (d)sa(J)M" I[ZPB]_L]_ ® %21,2] }l!)]-m(psl(,l)m>

=" (=)' 2A + 1) 2(1 = M'IM'|10) (jmAM' = m|IM")A,,

A$1=(_1V241@11+1fk§L1 L, A}

J j I

. As=2=(_1)L1¢L2-A-J(212+1)1/2 ng L A

J j I

B. Intrinsic wave function for identical cores

An interesting special type of transfer reac-
tions, namely the elastic transfer, occurs for
identical cores. Experimental work on elastic
transfer reactions has been extensively carried

— |

1/2
biw= 3 i‘(zl+1) (10gM’|IM")

salTH® 167*

Here we denote the relative coordinate after core
exchange by R,. It is given according to Eq. (5)
by '

- —_

,=-R,, R,=-R,. ‘ (41)

oh
o

For equal cores the mass asymmetries of the
ATCSM have the values n, =—n,=1/A. As first
approximation one may use the symmetric TCSM.
Between the wave functions of the ATCSM the
following phase relation holds®:

goll(!)m(xé.m. ) '—ycl.m‘, - z(,:,rn., Rl)

= (_l)j.zmgoz)»(l) -m(?é-m»a Rz) . (42)

Using Egs. (41) and (42) we obtain for the wave
function (40)

[ 20+1\12
Z)DIM: Z 11(16;2> (ZOJM’lIM,)Dfll);'((:Ds,Ssyd)s)

souldM’
) X [RsalJl(Rs)ésa(J)M‘
+ (_1)1-J’Ig*LsRSdXJI(Rs)q;s&(J)M']

(43)

with the abbreviations

(39)

r
out by von Oertzen et al.,® who have analyzed
their data in terms of a linear combination of
nuclear orbitals (LCNO).

For C, =C,=C we symmetrize the wave func-
tion for the exchange of the cores. The total
wave function [see Eq. (25)] consists of two parts,
the direct and core-exchange term: ’

* = ~ * ~ ~ -
X [RsalJI (Rs)DﬁlM’(QDsy ‘937 ¢s)¢sa¢(J)M'(direCt) +RsatlJl(Rs)D§Hl'(¢s, ‘93, Zxbs)¢sm(J’)M’(exchange)] .

—
§=1fors=2; §=2fors=1

La=(8,Ly, N,1; ByLs),
1a=(BLy, M, 155 BiLy),
2a=(8,Ly; ByLy, N,y 1),
2&=(B,Ly; BLy, Myy) .

After reordering the summation in Eq. (43) we
finally obtain the following expression:

1/2
bu= 3 i*(iﬁ;}) (100 {IM)

suidM*

(44)

-~ * ~
X Rsal.rl (Rs)D{uM’(QDs, ‘93, zps)q)sm( TJIM!
(45)

with the radial functions

RsalJI(Rs) = % (Rsal.ﬂ(Rs)
+(=1)" LS R 1 (R)) (46)

For the special case, when both cores are in the
ground state (L, =L, =0), or more generally
when sa=s&, the radial wave functions for

s =1 and 2 are related by

RIGIJI = (‘UhhtﬂLﬁRzaw[ ° (47)

Next we symmetrize the wave function in the
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representation defined in Eq. (37) for core ex-
change. The result is

bru= Z Ry(syr(R MW (s)ru » (48)
X

where

- 1
Rg(s)r = ﬁ (RK(S)I(Rs)

+ (_1)[+j+L10L2-zM‘RE(§)I(Rs)) ,
K(S):(S,M'; 61[’1: ﬁszy A;SAjm)’ (49)
RBE)=G,-M’;B,L,, B, Ly, A;3Nj —m).

Similarly to Eq. (47) we find for the case when
the cores occupy equal states, B, L, =5,L,:

Ryyr = (1) "k 2 e ) (50)
Since the difference between the two relative
coordinates ﬁl and ﬁz is small for equal cores,
we may approximate the expression (48) by in-
serting ﬁl =§2 =R and using the solutions of the
symmetric TCSM which are independent of s,
namely @ o ym= a(;)m- The eigenfunctions of the
symmetric TCSM have a good parity 7 =+1:

Yru= ('21%%) Z RKI(R){D:IM [‘pB 1L1(1)®¢82L2(2)] -m‘P).(J)m

:l:(_l )1(_1 I&hIlﬁLz'zM'DﬁltM, [(/)gsz(l)@ (/JB lLl(z)] EAM

Here ! is the orbital angular momentum of the
asymptotic STCSM wave functions with respect
to their centers.® The structure and symmetry
of this wave function are the same as those used
in the strong-coupling model (Nilsson model) de-
scribing the motion of a nucleon coupled to the
rotation and vibrations of a deformed core.'®

IV. COUPLED CHANNEL EQUATIONS

In this section we derive coupled channel equa-
tions for the radial wave functions. Using the
representation defined in Eq. (37) we divide the
wave function with respect to the fragmentation:

Yru= Z RK(1)I(R1)¢K(1)IM(R1,'§£[“ , /(i))
k(1)

+ Z RK(z)I(Rz)ZpK(z)IM(sz Tem, az,(ui)) (52)

K(2)

A. Overlap integrals and shift operators

Overlap integrals between the two parts of
the wave function (52) are, in general, difficult
to evaluate, as is known from the exact treat-
ment of recoil effects. The general type of over-
lap integral is given by

[ or @, e ul®, T, or ar,.  (53)

When the coordinates of integration are chosen

as Ry and Fem, the volume element has to be taken

as d7, [see Eq. (8)]. The operators S, and S,,
whlch shift both sets of coordinates, are defined
by
‘pm(ﬁzy? m;,) =S (Rn?cm )me( 1 cm)) (54)
wn(R],’ rcm ) S (Rzy‘. cm.)lpn(Rzy rC.m.) .

These operators fulfill the equation

]’¢m¢h(l)-m} . (51)

j lprf(ﬁp ? C-m-)sl(l—iu —fc.m. )me(ﬁu ;cm. )dT1

- .\ - - *
= [f ‘p;‘l(Rzy r C.m-)Sz(Rzy rC-I'IL){pn(Rz’ rc.m.)de]

(55)
The operators S can be written in the form of
exponential operators, where we have applied
Eq. (6):

1 = -
S, =exp {— C.+10C, [(C,=C,)R, +ATcm ] gradl} ,

S,= exp{(—c‘ﬁ)‘@ [(C, = C,)R, +AT ] gradz} .
(56)

In principle, the integrals (55) can be calcu-
lated numerically. But in the following, we pre-
fer an approximation which takes a Taylor ex-
pansion of (56) up to first order in the exponents.
If we use the first order terms as they result
from the Taylor expansion of (56), Eq. (55) would
only be fulfilled approximately to the same order.
Since Eq. (55) is important for the proof of the
Hermiticity of the coupled equations, we approx-
imate Eq. (56) by the following shift operators
which are modified in the constants v, and y, so
that they satisfy Eq. (55) exactly:

SRy, TFom) =1 +vs[(C, = C,)R, +ATcm]grad;,

(57)
where
v, ==(+ap+p)/30°,
v, =(# + aB+FP)/38, (58)

a=(C,+1)C,; B=C,(C, +1).
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The gradients operate on the relative coordinates ﬁl and ﬁz After the transformation to the rotating

coordinate system we get the following equation:

[(C, = C,)Rs +AT .. ] grad, =[(C, = C,)R, +Azim ]
where
-j =?é.m‘ x-ﬁé.m. +§I . : (59)

In the following we use the approximations (57)
instead of the exact expressions (56).

B. Coupled equations

The Hamiltonian H, as given in Eq. (18), de-
pends on the fragmentation s. If H were the ex-
act microscopic Hamiltonian, both representations
would fulfill the identity relation with the shift
operator (56):

Sx(ﬁu?c.m.)H(Z’ ﬁz =:—R’1!-fc.m.! Q)

=H(1, ﬁl’?c.m.’ &zu)sl(ﬁu?cm.) . (60)

For the realistic Hamiltonians (s =1, 2), de~-
fined in Eq. (18), Eq. (60) is satisfied for the
kinetic energy exactly. However, the potential
energies fulfill Eq. (60) only approximately,
since they are represented by models in the

]

fzp,f(ﬁl, .. HS(L, R,

9
R,

NIS-

[xcm(l -d - Jcoll)y'—ycm('[ - "Jcoll)x']y

IS

r

Hamiltonian (18). Also, when we insert the ap-
proximative expressions (57) for the shift opera-
tors in Eq. (60), this equation cannot be exactly
satisfied. Because Eq. (60) is important for the
proof of the Hermiticity of the coupled equations,
we replace these operators by their average:

-

Ss(RsyIc.m.)H(sy Ré'“Rsy““‘)}-.HS(S R )
ytVsy e 0o /y
H(S,Rs,-t )Ss( Sy cm)
(61)

where HS is defined by (s =1, 2)

HS(s, R, ...) = 5[So(Rs, Tem )HE, Rs =R,, . ..)
+H(S, ﬁs, oo )Ss(ﬁs’?c.m.)] °
(62).

The averaged operators HS(s) have the same
Hermitian property such as the shift operators
in Eq. (55):

- - - - —- - *
..,)z/),,,(R2=R1,°..)d71=(fz/);(Rz,...)HS*(Z,Rz,...)z/),,(RlﬁRz,...)d72> . (63)

where ¥, and ¢, are wave functions describing different fragmentations. We note that the Hamiltonians
are real except the imaginary potentials which have been introduced in Eq. (12). With the approximation
(62) we obtain the following system of coupled channel equations for the radial functions:

Y Dy (0 RORe (1 (Ry) + 2 Dy, ) (R)Riapr (Ry) =0,

k' (1) K'(2)

Z DK(z).K'(z)(

K'(2) K'(1)

(64)

Ry)Ri(2)1(R,) + Z Dg(a),x (1) R2)Rr(1)r(R3) =0.

The first sum in these equations describes elastic scattering and inelastic excitation, and the second
sum describes the transfer reactions. The differential operators are calculated by integrating over the
Euler angles, the single~particle and collective céordinates, but not over the radial coordinate Rg:

DK(S) &*(s) R ) fzib;(s)IM(Rsy rcm ) az(”)(H( s; .o °) E)lpK'(s)IM(Rs’ cm.? az(”)dﬂsd‘g'}'c'.m,d'ra,zu, (653)

DK( s) . K'(§ )(Rs) f Z/J,f(s)“,(Rs, rcm ’ al(‘))(HS(S’ ﬁs:

X dﬂs dsrc.m.d O"zu ’

-)—Ess(Rsy cm)Z/)K’(s)IM(_. I—'i.s,-fc’.m., azl(ut))

(65b)

where H(s) is defined in Eq. (18), HS(s) in Eq. (62), and S, in Eq. (57). The same equations result for
the symmetrized wave functions (48) in the case of identical cores.

C. Evaluation of the differential operators

The differential operators, defined in Eq. (65), are most easily obtained if we are reminded that the
wave functions yx;y are eigensolutions of the Hamiltonian H (s) [see Eq. (38)]:
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Ho(s) =[Icoll +hATCSM (S)+ 2 R 2 (I —Iz' +Jcoll _Jcoll 2! ) (66)
Therefore, we divide the total Hamiltonian (18) into the following parts:
72 ] 2 ] >
H6) == 5 (52 +0,) Rt UplR) W R T2 B) +H(5) + W 5)+ W), (1)

where W, is defined by

rot (S)— Z(J J +J J ) Is(J +Jcoll ) Ig (J* +J::0I] )+J* coll +J Jcoll] (68)

1
“ R 2[
1. Matrix elements Dy, K'(s)

These matrix elements are given by, according to Eqs. (65a) and (67),

_nm?_ ad?
Dx(s).x'(s)=5x(s>.x(s)[ 2n.Rr, aRERetUoRs ) +iW(R, I(1+1)2%, E)+Em-E]
w 2 2 0 d
= 2. [<¢K(s)m <3R +D ) ¢K’(s)1u> ‘R, <¢K(s)m ("“‘aRs +Ds) ¢K'(s)1u> EE‘RJ

+ (lplr( s)IMI Wit + Wcoupl ‘pK'( s)lM) . (69)

The matrix elements with the operator 8/9R,+D, are typical for molecular wave functions and cause the
radial coupling. They can be reduced to matrix elements between the ATCSM wave functions and vanish

for Ry— :
<] n 9 A n
<¢K(s)m (5? +Ds> ¢K’(s)1M> =0yiOg 1,842 081,851 084 O mm <(ps>»(.l)m <§E‘ +Ds) (ps»\'(j’)m> , (70)
S s
n=1,2,

The matrix elements of W,,, are caused by the rotation of the intrinsic coordinate system. They are
straightforwardly reduced to the following form:

1
Wrcsrrul Weot| Yxrsrru) = hRE 06 ,2,.81L,08,L,,85L5000

(I 6mﬂ<(pSA(I)m|%(J;J; +Jgd ;)l%"sx'(j')m)
= Ba( 1)) Ot B2 Oy [(L + M + 1) (I = M)A + M = + 1) (A = M +m)] ¥
+0yn oo [ =M + )T+ M YA~ M +m+1)(A +M' - m)]l/z}
+ 0 et O [(A + M7 =+ 1)(A = M? +m)] Y2 = By oy [(1 = M+ 1)(1 +M")] 2}
X{@sa(iyml I sl Psr(oymer) k
+ 8t ma BB i [(A = M+ + V)N + M = m)] Y2 = 6y [(1 + M7 +1)(I = 7)] M2}
x(Qgij)mlJ;l(psh'(j')mu>)o‘ . (71)

Only asymptotically (Rs— «), when j becomes a good quantum number, the matrix eiements of the opera-
tors J, reduce to the usual simple expressions
(Paanml 3(T5T5 +I5T )N @arnsnm) = Oayaeye GG +1) = m?)i?,
Rg>® (72)
(‘Ps)t(j)ml J% l‘psh'(j')mﬂ) R = Oy (fFm+1)(jxm)] Ve
-

2. Matrix elements DK(s}, K3

These matrix elements, defined in Eq. (65b), contain the recoil effects in the transfer reactions. For
convenience, we separate the recoil contributions out of the transfer matrices:



198 JAE Y. PARK, WERNER SCHEID, AND WALTER GREINER 20

Dy(o),x15) =P x1s) + D) x(s)
=(Wr(oyrul 5CH(L, Ry, .. ) +H(2, Ry, .. )= Eldgusyin) ' (73)
+<¢K(3)1MI%{(SS - I)H(§, ﬁ& o e )+H(S, ﬁs’ oo )(Ss— 1)} - (Ss - I)Ele'(5)1M> .

If all recoil effects are neglected, the second term in Eq. (73) has to be disregarded. For the first
term we find the expression

Dg(s),x(5) = OururOmmO8 1.5 82408 1,8 £, 0n 0"
w1 1 1 a2
X ((<Psx(j)ml<Ps,v(j')m) { -7 <H_1 + TJ‘—z) . mRﬁUo(Rs)
. 1
+IW[Rs, [(I + L)%, E]+ 5 (Ex(s)1 +Egsyr) = E}
(2 .p )2 t/o »Y
w \3r, ") T, \er, T ‘”“'“""‘>

1 ) 1 9 d
s (51—2: +D‘) Y <3Es: +Dz) QD“'(”')'”>EI_3;R3]>

ZZ [Wrm (S)+ Wcoup(s)] ‘pK’(s")fM> . \ (74)
$=1

"
! PsMi)m

2
+k’: Psx(iym

1
+ ‘2'<¢'K(s)m

The matrix elements of W,,, can be calculated in complete analogy to Eq. (71). The overlap matrix
elements (<p3|<p§) are different from zero in the reaction zone where we use different ATCSM for the two
fragmentations. It would be a realistic approximaticn to use the same ATCSM for both fragmentations
with an average mass asymmetry 7 =(C, = C,)/A [see Eq. (35)], independent of s. In that case, the overlap
matrix elements <(PSI(P§> are identically zero since the solutions of the same ATCSM are orthonormal.
This approximation needs a redefinition of the operators D and J ¢ in order to ensure that special matrix
elements, such as Eq. (70), vanish asymptotically. A forthcoming paper will discuss this approach in
detail.'s

For the second term in (73) we first consider the matrix elements of the shift operator (57) which we
express in spherical tensor operators:

o Af2m\“rin, Lot NIt Y Tt
g’ﬁ;+g<—3') R, 1Y, Obm, @)U s =d" = dn )

Ss(ﬁsr¥c.m,) = 1 +75{[(C1 - Cz)Rs +AZéAmA]

+ ¥, 0000, 9tm)I 5 =d7 =dau )]} . (75)
With this expression we obtain

Ss= Vi) xs) = risyrul Ss®Ry Tom ) = 1 bier(sy1)
3 A [27\*%
<7508 1,.8484,08 51, 84,1300 (GM'M'% {@ainnll (€, COR L+ Azt - i (?)
S S
X¥em (Y + Y I )@ sne 0 m)

d
Pl (Cr = CoRs + Azt @510y m) T2 }
S

+ % <%) l/z(én(,m¢1<(tpsh(j)m"r({.m, Yl @endsnmer)
X {8y g [(1+ M +1)(T = M)z - Syppe[(A =M +m +1) (A + M' - m)] 2}
+ B, me (P sk 1) ml Pm, Yir | 950059y mer)
X {8y apr[(1 = M7+ )T+ M)}V = 0 [ (A + M =+ 1)(A = M" +m)] "/z}) .
(76)

The operator (S; — 1)gg vanishes asymptotically (Rs~ «). If j were a good quantum number, the matrix
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elements would have had the selection rule j’=j,j+ 1. With the result (76) we may write the matrix ele-

ments of the second part in Eq. (73):

7”2 1 d?

Di(a).x0s) = 2(Ss = l)m<— 20 R AR
S S s

Rs+Uy(Rg) +iW(Rs, . .. )+ Eg(s)r ~ E)

1 7?1 de .
+3 Rs+Uy(Rs) +iW(Rg, ... )+ Eg(s)yr = E ) (Sg= 1)gg +rest. 7)

~ 20, R, dR ]

, Here the rest term contains the operators W,
and W, and the remainder of the radial kinetic
energy. In order to obtain cross sections for
elastic, inelastic, and transfer processes, com-
putational work to solve the coupled equations
(64) is required. As a first step we have further
simplified the equations (64) using the same
ATCSM for both fragmentations. This approach
will be published in Ref. 15.

V. CONCLUDING REMARKS

In this paper we have developed a practicable
method to use molecular single-particle wave
functions also for transfer reactions. The single-
particle states depend on the fragmentations which
are different in the direct and transfer channels.
For first numerical calculations it would be
sufficient to apply the same ATCSM in all frag-
mentations. This approximation has the unique
advantage that all single-particle states become
orthogonal independently of the fragmentation.
Thereby, the transfer operators are greatly
simplified.

There exist mainly two possibilities in choosing
the intrinsic basis functions. In Refs. 4 and 8 we
have taken M-weighted sums over the ATCSM
states as basis states for the coupled equations
so that these equations are asymptotically decou-
pled. This basis has the disadvantage that the
states are no longer eigenstates of the ATCSM.

In this paper we have used the individual eigen-
functions of the ATCSM as basis states. How-
ever, the resulting equations are still coupled
asymptotically by the Coriolis potential. Both
choices of bases are completely equivalent as
long as the same sets of ATCSM states are

taken into account. The method of this paper has
the advantage that the channels for excitation and
transfer can be classified by the individual levels
of the ATCSM. . Therefore, it is most transparent
how to select out the ATCSM levels for the cou-
pled channel equations. The disadvantage of this
basis lies in its asymptotic coupling and, as
discussed, can be easily overcome by a simple
matrix multiplication in the calculation of the

S matrix.

The present theory can be straightforwardly
extended to the case of more than one extracore

r

nucleon. As an example for application we men-
tion the '3C —13C scattering. Terlecki ef al.® have
calculated the elastic scattering and inelastic ex-
citation of the neutrons within the framework of
the molecular theory. The next steps which need
to be carried out are the calculation of the neutron
transfer cross sections 3C +3C -~ !2C +'%C, and
the inelastic excitation of the *2C cores. The
formalism of the antisymmetrization of the extra-
core neutrons leads to additional relative co-
ordinates for each partition of the extracore

‘nucleons. Since the antisymmetrization represents

an exchange of nucleons, it generates similar
effects in the coupled channel equations as the
physical transfer processes. °

It is worthwhile to develop a theory of particle-
hole excitations in the molecular formalism (see
also Ref. 5). In such a theory the inelastic scat- .
tering of even-even nuclei can be described with-
out violating the Pauli principle in contrast to the
particle-core model where the antisymmetriza-
tion between the core and extracore nucleons is
completely neglected. The residual nucleon-nu-
cleon interaction could be partly taken into ac-
count by using Hartree-Fock solutions'® for the
single-particle states instead of the ATCSM
states. '

The cross sections for the excitation and trans-
fer of nucleons in reactions, such as *C +!¢0
-~ 12C +170, should exhibit certain enhancements
as function of the heavy ion energies which arise
due to avoided level crossings in the two-center
level diagrams.'” Similar effects have been ob-
served in atomic physics and are known as pro-
motion processes according to Fano and Lichten.'®
It would be a unique signature for the formation of
nuclear molecular orbits if the promotion process
for nucleons could be detected in the transfer and
excitation cross sections.'® Up until now, no ex-
perimental investigations in that direction have
been known to us, which can give an answer to the
important problem of the existence of molecular
orbits in nuclear heavy ion collisions.
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