9,191 research outputs found
On a New Approach for Constructing Wormholes in Einstein-Born-Infeld Gravity
We study a new approach for the wormhole construction in Einstein-Born-Infeld
gravity, which does not require exotic matters in the Einstein equation. The
Born-Infeld field equation is not modified from "coordinate independent"
conditions of continuous metric tensor and its derivatives, even though the
Born-Infeld fields have discontinuities in their derivatives at the throat in
general. We study the relation of the newly introduced conditions with the
usual continuity equation for the energy-momentum tensor and the gravitational
Bianchi identity. We find that there is no violation of energy conditions for
the Born-Infeld fields contrary to the usual approaches. The exoticity of
energy-momentum tensor is not essential for sustaining wormholes. Some open
problems are discussed.Comment: Minor revision to improve the clarity, Corrected typos, Added
reference and footnot
Quasi-Normal Modes of a Natural AdS Wormhole in Einstein-Born-Infeld Gravity
We study the matter perturbations of a new AdS wormhole in (3+1)-dimensional
Einstein-Born-Infeld gravity, called "natural wormhole", which does not require
exotic matters. We discuss the stability of the perturbations by numerically
computing the quasi-normal modes (QNMs) of a massive scalar field in the
wormhole background. We investigate the dependence of quasi-normal frequencies
on the mass of scalar field as well as other parameters of the wormhole. It is
found that the perturbations are always stable for the wormhole geometry which
has the general relativity (GR) limit when the scalar field mass m satisfies a
certain, tachyonic mass bound m^2 > m^2_* with m^2_* < 0, analogous to the
Breitenlohner-Freedman (BF) bound in the global-AdS space, m^2_BF = 3 Lambda/4.
It is also found that the BF-like bound m^2_* shifts by the changes of the
cosmological constant Lambda or angular-momentum number l, with a level
crossing between the lowest complex and pure-imaginary modes for zero angular
momentum l = 0. Furthermore, it is found that the unstable modes can also have
oscillatory parts as well as non-oscillatory parts depending on whether the
real and imaginary parts of frequencies are dependent on each other or not,
contrary to arguments in the literature. For wormhole geometries which do not
have the GR limit, the BF-like bound does not occur and the perturbations are
stable for arbitrary tachyonic and non-tachyonic masses, up to a critical mass
m^2_c > 0 where the perturbations are completely frozen.Comment: Added comments and references, Accepted in EPJ
Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption
Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1−/−) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1−/− mice than in WT mice. Furthermore, the bone status of Vav1−/− mice was analyzed in situ and the femurs of Vav1−/− mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption
- …