13,125 research outputs found

    Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo

    Get PDF
    Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. Lacking effective therapeutic options hinders treatment of TNBC. Here, we show that bepridil (BPD) and trifluoperazine (TFP), which are FDA-approved drugs for treatment of schizophrenia and angina respectively, inhibit Akt-pS473 phosphorylation and promote FOXO3 nuclear localization and activation in TNBC cells. BPD and TFP inhibit survival and proliferation in TNBC cells and suppress the growth of TNBC tumors, whereas silencing FOXO3 reduces the BPD- and TFP-mediated suppression of survival in TNBC cells. While BPD and TFP decrease the expression of oncogenic c-Myc, KLF5, and dopamine receptor DRD2 in TNBC cells, silencing FOXO3 diminishes BPD- and TFP-mediated repression of the expression of these proteins in TNBC cells. Since c-Myc, KLF5, and DRD2 have been suggested to increase cancer stem cell-like populations in various tumors, reducing these proteins in response to BPD and TFP suggests a novel FOXO3-dependent mechanism underlying BPD- and TFP-induced apoptosis in TNBC cells

    Acquire information about neutrino parameters by detecting supernova neutrinos

    Full text link
    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13\theta_{13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13\theta_{13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.Comment: 21 pages, 11 figure

    R-parity violation and top quark polarization at the Fermilab Tevatron collider

    Full text link
    The lepton or baryon number violating top quark interactions in the supersymmetric standard model with R parity violation contribute to the process d dbar to t tbar at the tree level via the t- or u-channel sfermion exchange. Since these interactions are chiral, they induce polarization to the top quark in the t tbar events at hadron colliders. We show in this article that the polarization can be a useful observable for probing these interactions at the upgraded Fermilab Tevatron collider, because the polarization is expected to be very small in the standard model.Comment: 15 pages, 5 figure

    Dynamics and transport in random quantum systems governed by strong-randomness fixed points

    Get PDF
    We present results on the low-frequency dynamical and transport properties of random quantum systems whose low temperature (TT), low-energy behavior is controlled by strong disorder fixed points. We obtain the momentum and frequency dependent dynamic structure factor in the Random Singlet (RS) phases of both spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the Random Dimer (RD) and Ising Antiferromagnetic (IAF) phases of spin-1/2 random antiferromagnetic chains. We show that the RS phases are unusual `spin metals' with divergent low-frequency spin conductivity at T=0, and we also follow the conductivity through novel `metal-insulator' transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength of disorder in the spin-1 case. We work out the average spin and energy autocorrelations in the one-dimensional random transverse field Ising model in the vicinity of its quantum critical point. All of the above calculations are valid in the frequency dominated regime \omega \agt T, and rely on previously available renormalization group schemes that describe these systems in terms of the properties of certain strong-disorder fixed point theories. In addition, we obtain some information about the behavior of the dynamic structure factor and dynamical conductivity in the opposite `hydrodynamic' regime ω<T\omega < T for the special case of spin-1/2 chains close to the planar limit (the quantum x-y model) by analyzing the corresponding quantities in an equivalent model of spinless fermions with weak repulsive interactions and particle-hole symmetric disorder.Comment: Long version (with many additional results) of Phys. Rev. Lett. {\bf 84}, 3434 (2000) (available as cond-mat/9904290); two-column format, 33 pages and 8 figure

    Probing anomalous top quark interactions at the Fermilab Tevatron Collider

    Get PDF
    We study the effects of dimension-six operators contributing to the gttˉgt\bar t vertex in top quark pair production at the Tevatron collider. We derive both the limits from Run 1 data and the potential bounds from future runs (Run 2 and 3). Although the current constraints are not very strong, the future runs are quite effective in probing these operators. We investigate the possibility of disentangling different operators with the ttˉt\bar t invariant mass distribution and the top quark polarization asymmetry. We also study the effects of a different set of operators contributing to single top production via the WtbˉWt\bar b coupling. We derive the current and potential future bounds on these anomalous operators and find that the upgraded Tevatron can improve the existing constraints from RbR_b for one of the operators.Comment: 20 pages, 2 figures, REVTEX, some clarifying remarks adde

    On a Linear Program for Minimum-Weight Triangulation

    Get PDF
    Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time constant-factor approximation algorithm, and a variety of effective polynomial- time heuristics that, for many instances, can find the exact MWT. Linear programs (LPs) for MWT are well-studied, but previously no connection was known between any LP and any approximation algorithm or heuristic for MWT. Here we show the first such connections: for an LP formulation due to Dantzig et al. (1985): (i) the integrality gap is bounded by a constant; (ii) given any instance, if the aforementioned heuristics find the MWT, then so does the LP.Comment: To appear in SICOMP. Extended abstract appeared in SODA 201

    Dimension-six CP-conserving operators of the third-family quarks and their effects on collider observables

    Get PDF
    We list all possible dimension-six CP-conserving SUc(3)×SUL(2)×UY(1)SU_c(3)\times SU_L(2) \times U_Y(1) invariant operators involving the third-family quarks which could be generated by new physics at a higher scale. Expressions for these operators after electroweak gauge symmetry breaking and the induced effective couplings WtbˉWt\bar b, XbbˉXb\bar b and XttˉXt\bar t (X=Z,γ,g,H)( X=Z,\gamma,g,H) are presented. Analytic expressions for the tree level contributions of all these operators to the observables RbR_b and AFBbA^b_{FB} at LEP I, σ(e+e−→bbˉ)\sigma(e^+e^-\rightarrow b\bar b) and AFBbA^b_{FB} at LEP II, σ(e+e−→ttˉ)\sigma(e^+e^-\rightarrow t\bar t) and AFBtA_{FB}^t at the NLC, as well as σ(ppˉ→tbˉ+X)\sigma(p\bar p\rightarrow t\bar b+X) at the Tevatron upgrade, are provided. The effects of these operators on different electroweak observables are discussed and numerical examples presented. Numerical analyses show that in the coupling region allowed by RbR_b and AFBbA^b_{FB} at LEP I, some of the new physics operators can still have significant contributions at LEP II, the Tevatron and the NLC.Comment: 25 page
    • …
    corecore