7,065 research outputs found
Illumination invariant stationary object detection
A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods
Quantum Thetas on Noncommutative T^4 from Embeddings into Lattice
In this paper we investigate the theta vector and quantum theta function over
noncommutative T^4 from the embedding of R x Z^2. Manin has constructed the
quantum theta functions from the lattice embedding into vector space (x finite
group). We extend Manin's construction of the quantum theta function to the
embedding of vector space x lattice case. We find that the holomorphic theta
vector exists only over the vector space part of the embedding, and over the
lattice part we can only impose the condition for Schwartz function. The
quantum theta function built on this partial theta vector satisfies the
requirement of the quantum theta function. However, two subsequent quantum
translations from the embedding into the lattice part are non-additive,
contrary to the additivity of those from the vector space part.Comment: 20 pages, LaTeX, version to appear in J. Phys.
Brans-Dicke Gravity from Entropic Viewpoint
We interpret the Brans-Dicke gravity from entropic viewpoint. We first apply
the Verlinde's entropic formalism in the Einstein frame, then perform the
conformal transformation which connects the Einstein frame to the Jordan frame.
The transformed result yields the equation of motion of the Brans-Dicke theory
in the Jordan frame.Comment: Title changed, minor changes to match the published versio
Recommended from our members
Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice.
BackgroundObesity is associated with gut microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Given the high and increasing prevalence of obesity worldwide, anti-obesity treatments that are safe, effective and widely available would be beneficial. We examined whether the medicinal mushroom Antrodia cinnamomea may reduce obesity in mice fed with a high-fat diet (HFD).MethodsMale C57BL/6J mice were fed a HFD for 8 weeks to induce obesity and chronic inflammation. The mice were treated with a water extract of A. cinnamomea (WEAC), and body weight, fat accumulation, inflammation markers, insulin sensitivity and the gut microbiota were monitored.ResultsAfter 8 weeks, the mean body weight of HFD-fed mice was 39.8±1.2 g compared with 35.8±1.3 g for the HFD+1% WEAC group, corresponding to a reduction of 4 g or 10% of body weight (P<0.0001). WEAC supplementation reduced fat accumulation and serum triglycerides in a statistically significant manner in HFD-fed mice. WEAC also reversed the effects of HFD on inflammation markers (interleukin-1β, interleukin-6, tumor necrosis factor-α), insulin resistance and adipokine production (leptin and adiponectin). Notably, WEAC increased the expression of intestinal tight junctions (zonula occludens-1 and occludin) and antimicrobial proteins (Reg3g and lysozyme C) in the small intestine, leading to reduced blood endotoxemia. Finally, WEAC modulated the composition of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio and increasing the level of Akkermansia muciniphila and other bacterial species associated with anti-inflammatory properties.ConclusionsSupplementation with A. cinnamomea produces anti-obesogenic, anti-inflammatory and antidiabetic effects in HFD-fed mice by maintaining intestinal integrity and modulating the gut microbiota
Theta Vectors and Quantum Theta Functions
In this paper, we clarify the relation between Manin's quantum theta function
and Schwarz's theta vector in comparison with the kq representation, which is
equivalent to the classical theta function, and the corresponding coordinate
space wavefunction. We first explain the equivalence relation between the
classical theta function and the kq representation in which the translation
operators of the phase space are commuting. When the translation operators of
the phase space are not commuting, then the kq representation is no more
meaningful. We explain why Manin's quantum theta function obtained via algebra
(quantum tori) valued inner product of the theta vector is a natural choice for
quantum version of the classical theta function (kq representation). We then
show that this approach holds for a more general theta vector with constant
obtained from a holomorphic connection of constant curvature than the simple
Gaussian one used in the Manin's construction. We further discuss the
properties of the theta vector and of the quantum theta function, both of which
have similar symmetry properties under translation.Comment: LaTeX 21 pages, give more explicit explanations for notions given in
the tex
Fundamental thickness limit of itinerant ferromagnetic SrRuO thin films
We report on a fundamental thickness limit of the itinerant ferromagnetic
oxide SrRuO that might arise from the orbital-selective quantum confinement
effects. Experimentally, SrRuO films remain metallic even for a thickness
of 2 unit cells (uc), but the Curie temperature, T, starts to decrease at 4
uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T
decrease to a decrease in the density of states (N). Namely, in the thin
film geometry, the hybridized Ru-d orbitals are terminated by top and
bottom interfaces, resulting in quantum confinement and reduction of N.Comment: 20 pages, 4 figure
Noncommutative BTZ Black Hole in Polar Coordinates
Based on the equivalence between the three dimensional gravity and the
Chern-Simons theory, we obtain a noncommutative BTZ black hole solution as a
solution of noncommutative Chern-Simons theory using the
Seiberg-Witten map. The Seiberg-Witten map is carried out in a noncommutative
polar coordinates whose commutation relation is equivalent to the usual
canonical commutation relation in the rectangular coordinates up to first order
in the noncommutativity parameter . The solution exhibits a
characteristic of noncommutative polar coordinates in such a way that the
apparent horizon and the Killing horizon coincide only in the non-rotating
limit showing the effect of noncommutativity between the radial and angular
coordinates.Comment: 14 pages, V2: minor changes, v3: reduced for clarification, a
reference adde
Rotating Black Hole Entropy from Two Different Viewpoints
Using the brick-wall method, we study the entropy of Kerr-Newman black hole
from two different viewpoints, a rest observer at infinity and zero angular
momentum observer near horizon. We investigate this with scalar field in the
canonical quantization approach. An observer at infinity can take one of the
two possible frequency ranges; one is with positive frequencies only and the
other is with the whole range including negative frequencies. On the other
hand, a zero angular momentum observer near horizon can take positive
frequencies only. For the observer at infinity the superradiant modes appear in
either choice of the frequency ranges and the two results coincide. For the
zero angular momentum observer superradiant modes do not appear due to absence
of ergoregion. The resulting entropies from the two viewpoints turn out to be
the same.Comment: LaTeX 18 pages, 2 figures, Minor modifications in section 3(ZAMO
HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells
The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor κB pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds
- …