6 research outputs found
Numerical Modeling of Methane Decomposition for Hydrogen Production in a Fluidized Bed Reactor
The decomposition of methane for hydrogen production is an attractive alternative to the established method of reforming. This process considerably reduces the emission of greenhouse gases, and its overall efficiency and cost are competitive. The decomposition of methane is performed with a catalyst to produce a substantial amount of hydrogen, and decrease the operating temperature. Between different catalysts available, carbon is selected in this study due to its low rate of decay and advantages such as low cost and availability. Also, a fluidized bed reactor operating in the particulate regime is employed due to the efficient contact between the catalyst and the gas. Consequently, hydrogen production from the thermocatalytic decomposition of methane in a particulate fluidized bed reactor of carbon particles is investigated.
To obtain an appropriate design and operation for this process, the effect of different operating parameters and catalyst properties should be investigated on the performance. This aim can be achieved by modeling. A number of models with different complexities have been proposed for this process. Considering the objective of this thesis, a complex kinetic model is required to represent the effect of the catalyst properties. In literature, the kinetics is generally modeled with a global equation using experimental parameters. Since investigation on the effect of the properties of the catalyst is not feasible with this method, the detailed kinetic model with a surface reaction mechanism is employed in this study. Investigation on this surface mechanism is very limited, and only one of the models available in literature is determined to be appropriate. Nevertheless, this model has some important drawbacks. The major problem is that the specific surface area is considered as the only catalyst property affecting the activity of carbon. Experimental studies suggest that the activity of this catalyst is a function of its specific surface area and number of active sites, and neglecting either of these properties can lead to a high inaccuracy. Consequently, a new kinetic model is developed where a modified form of the available mechanism is used, and the number of active sites and the specific surface area of the catalyst are considered in the rate equations. It is noted that although several experimental investigations have been performed on the origin of the active sites, their quantity has not been acceptably determined yet. A method is presented in this study to estimate the number of active sites with the developed model and experimental data. To the best knowledge of the author, this is the first model to incorporate the effect of this parameter for carbon catalysts in the decomposition of methane and quantify its value. Another important problem of the model available in literature is its dependency on experimental measurements for determining the hydrodynamic characteristics of the fluidized bed. In this study, the hydrodynamics of the reactor is modeled with empirical correlations to obtain a complete representation of the process within the required accuracy, with minimal experimental requirements.
The model is used to investigate the effect of different operating parameters and catalyst properties on the amount of the initial methane conversion. The operating parameters studied are the temperature, residence time, gas velocity, and composition of the feed gas. The catalyst properties considered are the particle size and pore volume, the number of active sites, and the percentage of fine particles in the bed. The effect of the variations of each of these factors in a certain range is investigated for a fluidized bed reactor operating at the onset of fluidization at nominal condition. The onset of fluidization is maintained by changing the inlet flow rate in a reactor of a specific size. The results show that, considering the range of variations in this study, the procedures that cause the highest improvement in conversion are: increasing the residence time, decreasing the size of particles, adding fine particles to the bed, increasing the temperature, using catalysts with high surface areas or large number of active sites, changing the inlet gas composition, and using catalysts with large pore volumes, respectively. It is noted that all of these improvements are associated with higher initial or operating costs. Therefore, changing each of these factors beyond a certain value is faced with economic and technical barriers. Consequently, the possibility and efficiency of using two factors simultaneously for achieving higher conversions was also investigated. The results can be used as a guideline to choose between several catalysts considering their characteristics, or to suggest appropriate operating conditions.1 yea
Computational Fluid Dynamics Modeling and Experimental Testing of Hydraulic Spool Valves
To have faster time to market one must reduce the required experiments needed to develop new products. In this paper, hydraulic spool valves were investigated and a comparison of actual experimental data to the results of Fluent simulation was made. This comparison included multiple standard turbulence models in addition to a custom version of GEKO k-omega. Along with turbulence models, different solver options were compared to evaluate their impact on the results. This data will help better correlate future simulations to experimental data, thus utilizing simulation to design and experiment to verify the final solution if required
Study on Geothermal Heat Exchangers With Nanofluids Containing Ceramic Nanoparticles
A geothermal heat exchanger (GHE) uses geothermal energy for heating or cooling residential places during winter or summer. Two different designs of GHEs, the straight pipe and coiled pipe designs, are evaluated in this study, and the effect of nanofluids as the working fluid is investigated. For this purpose, a mathematical model is developed, validated, and used to predict the temperature gain, heat gain, exergy gain, and pressure loss of the working fluid for different concentrations of additive ceramic nanoparticles of aluminum oxide (Al2O3) and magnesium oxide (MgO) in the working fluid. It is shown that the coiled pipe design has a better performance compared to the straight pipe design for GHEs. It is also shown how the temperature, heat gain, and exergy gain change with increasing the additive nanoparticles into the base fluid, which is water, while the pressure loss does not change significantly. The temperature gain increases about 60% when the volume fraction of nanoparticles in the base fluid reaches 2%. This also helps to improve the natural circulation of working fluid and the GHE may not need a circulating pump to run at low flowrates. It is also shown that the additive MgO nanoparticles are more effective than Al2O3 nanoparticles to improve the GHE performance
Efficient Design of Feedwater Heaters Network in Steam Power Plants Using Pinch Technology and Exergy Analysis
A design method is presented based on pinch technology and exergy analysis to reduce heat transfer irreversibility of the feedwater heaters network in steam power plants. In order to show the effects of this method, an extensive study was performed on four steam power plants. The results show that applying this method can decrease the fuel consumption and the condenser load. It also increases the boiler, the feedwater heaters network, and the turbine exergetic efficiencies. On the whole, the results show that applying this method, with a target pinch temperature of 3°C, increases the cycle 2nd law efficiency 0.3–1.3% and the fossil fuel consumption decreases about 64 × 106kg annually for 8000 operating hours per year of the studied steam power plants. Copyright © 2007 John Wiley & Sons, Ltd
An Overview of the Methanol Reforming Process: Comparison of Fuels, Catalysts, Reformers, and Systems
One of the main challenges facing power generation by fuel cells involves the difficulties related to hydrogen storage. Several methods have been suggested and studied by researchers to overcome this problem. Among these methods, using fuel reformers as a component of the fuel cell system is a practical and promising alternative to hydrogen storage. Among many hydrogen carrier fuels used in reformers, methanol is one of the most attractive ones because of its distinctive properties. To design and improve of the methanol reformate gas fuel cell systems, different aspects such as promising market applications for reformate gas–fueled fuel cell systems, and catalysts for methanol reforming should be considered. Therefore, our goal in this paper is to provide a comprehensive overview on the past and recent studies regarding methanol reforming technologies, while considering different aspects of this topic. Firstly, different fuel reforming processes are briefly explained in the first section of the paper. Then properties of various fuels and reforming of these fuels are compared, and the characteristics of commercial reformate gas–fueled systems are presented. The main objective of the first section of the paper is to give information about studies and market applications related to reformation of various fuels to understand advantages and disadvantages of using various fuels for different practical applications. In the next sections of the paper, advancements in the methanol reforming technology are explained. The methanol reforming catalysts and reaction kinetics studies by various researchers are reviewed, and the advantages and disadvantages of each catalyst are discussed, followed by presenting the studies accomplished on different types of reformers. The effects of operating parameters on methanol reforming are also discussed. In the last section of this paper, methanol reformate gas–fueled fuel cell systems are reviewed. Overall, this review paper provides insight to researchers on what has been accomplished so far in the field of methanol reforming for fuel cell power generation applications to better plan the next stage of studies in this field