27 research outputs found

    Population Genomics of American Mink Using Whole Genome Sequencing Data

    No full text
    Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to 20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink

    Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species

    No full text
    A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed

    Population Genomics of American Mink Using Whole Genome Sequencing Data

    No full text
    Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink

    Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals

    No full text
    Disease is a global problem for animal farming industries causing tremendous economic losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment, eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically, and permanently eliminate the adverse influences of disease in the farm animals. These limitations and deficiencies drive animal breeders to be more concerned and committed to dealing with health problems in farm animals by selecting animals with favorable health traits. Both genetic selection and genomic selection contribute to improving the health of farm animals by selecting certain health traits (e.g., disease tolerance, disease resistance, and immune response), although both of them face some challenges. The objective of this review was to comprehensively review the potential of selecting health traits in coping with issues caused by diseases in farm animals. Within this review, we highlighted that selecting health traits can be applied as a method of disease control to help animal agriculture industries to cope with the adverse influences caused by diseases in farm animals. Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm animals. Therefore, management, vaccination, culling, medical treatment, and other measures must accompany selection solution to reduce the adverse impact of farm animal diseases on profitability and animal welfare

    Coat color inheritance in American mink

    No full text
    Abstract Background Understanding the genetic mechanisms underlying coat color inheritance has always been intriguing irrespective of the animal species including American mink (Neogale vison). The study of color inheritance in American mink is imperative since fur color is a deterministic factor for the success of mink industry. However, there have been no studies during the past few decades using in-depth pedigree for analyzing the inheritance pattern of colors in American mink. Methods In this study, we analyzed the pedigree of 23,282 mink extending up to 16 generations. All animals that were raised at the Canadian Center for Fur Animal Research (CCFAR) from 2003 to 2021 were used in this study. We utilized the Mendelian ratio and Chi-square test to investigate the inheritance of Dark (9,100), Pastel (5,161), Demi (4,312), and Mahogany (3,358) colors in American mink. Results The Mendelian inheritance ratios of 1:1 and 3:1 indicated heterozygous allelic pairs responsible for all studied colors. Mating sire and dam of the same color resulted in the production of offspring with the same color most of the time. Conclusion Overall, the results suggested that color inheritance was complex and subjected to a high degree of diversity in American mink as the genes responsible for all four colors were found to be heterozygous

    Applying Machine Learning Algorithms for the Classification of Mink Infected with Aleutian Disease Using Different Data Sources

    No full text
    American mink (Neogale vison) is one of the major sources of fur for the fur industries worldwide, whereas Aleutian disease (AD) is causing severe financial losses to the mink industry. A counterimmunoelectrophoresis (CIEP) method is commonly employed in a test-and-remove strategy and has been considered a gold standard for AD tests. Although machine learning is widely used in livestock species, little has been implemented in the mink industry. Therefore, predicting AD without using CIEP records will be important for controlling AD in mink farms. This research presented the assessments of the CIEP classification using machine learning algorithms. The Aleutian disease was tested on 1157 individuals using CIEP in an AD-positive mink farm (Nova Scotia, Canada). The comprehensive data collection of 33 different features was used for the classification of AD-infected mink. The specificity, sensitivity, accuracy, and F1 measure of nine machine learning algorithms were evaluated for the classification of AD-infected mink. The nine models were artificial neural networks, decision tree, extreme gradient boosting, gradient boosting method, K-nearest neighbors, linear discriminant analysis, support vector machines, naive bayes, and random forest. Among the 33 tested features, the Aleutian mink disease virus capsid protein-based enzyme-linked immunosorbent assay was found to be the most important feature for classifying AD-infected mink. Overall, random forest was the best-performing algorithm for the current dataset with a mean sensitivity of 0.938 ± 0.003, specificity of 0.986 ± 0.005, accuracy of 0.962 ± 0.002, and F1 value of 0.961 ± 0.088, and across tenfold of the cross-validation. Our work demonstrated that it is possible to use the random forest algorithm to classify AD-infected mink accurately. It is recommended that further model tests in other farms need to be performed and the genomic information needs to be used to optimize the model for implementing machine learning methods for AD detection

    Signatures of selection analysis using whole-genome sequence data revealed novel candidate genes for pony and light horse types

    No full text
    Natural selection and domestication have shaped modern horse populations, resulting in a vast range of phenotypically diverse breeds. Horse breeds are classified into three types (pony, light, and draft) generally based on their body type. Understanding the genetic basis of horse type variation and selective pressures related to the evolutionary trend can be particularly important for current selection strategies. Whole-genome sequences were generated for 14 pony and 32 light horses to investigate the genetic signatures of selection of the horse type in pony and light horses. In the overlapping extremes of the fixation index and nucleotide diversity results, we found novel genomic signatures of selective sweeps near key genes previously implicated in body measurements including C4ORF33, CRB1, CPN1, FAM13A, and FGF12 that may influence variation in pony and light horse types. This study contributes to a better understanding of the genetic background of differences between pony and light horse types.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Genetic and Phenotypic Parameters for Pelt Quality and Body Length and Weight Traits in American Mink

    No full text
    Understanding the genetics of fur characteristics and skin size is important for developing effective breeding programs in the mink industry. Therefore, the objectives of this study were to estimate the genetic and phenotypic parameters for pelt quality traits including live grading overall quality (LQU), live grading nap size (LNAP), dried pelt size (DPS), dried pelt nap size (DNAP) and overall quality of dried pelt (DQU), and body length and weight traits, including November body weight (Nov_BW), November body length (Nov_BL), harvest weight (HW) and harvest length (HL) in American mink. Dried pelt quality traits on 1195 mink and pelt quality traits on live animals on 1680 were collected from mink raised at two farms, in Nova Scotia and Ontario. A series of univariate analyses were implemented in ASReml 4.1 software to identify the significance (p < 0.05) of random effects (maternal genetic effects, and common litter effects) and fixed effects (farm, sex, color type, year, and age) for each trait. Subsequently, bivariate models were used to estimate the genetic and phenotypic parameters using ASReml 4.1. Heritability (±SE) estimates were 0.41 ± 0.06 for DPS, 0.23 ± 0.10 for DNAP, 0.12 ± 0.04 for DQU, 0.28 ± 0.06 for LQU, 0.44 ± 0.07 for LNAP, 0.29 ± 0.10 for Nov_BW, 0.28 ± 0.09 for Nov_BL, 0.41 ± 0.07 for HW and 0.31 ± 0.06 for HL. DPS had high positive genetic correlations (±SE) with Nov_BW (0.89 ± 0.10), Nov_BL (0.81 ± 0.07), HW (0.85 ± 0.05) and HL (0.85 ± 0.06). These results suggested that body weight and length measured on live animals in November of the first year were reliable indicators of dried pelt size. DQU had favorable genetic correlations with Nov_BL (0.55 ± 0.24) and HL (0.46 ± 0.20), and nonsignificant genetic correlations with DNAP (0.13 ± 0.25), Nov_BW (0.25 ± 0.25) and HW (0.06 ± 0.20), which made body length traits an appealing trait for selection for increased pelt size. High positive genetic correlation (±SE) was observed between LNAP and DNAP (0.82 ± 0.22), which revealed that nap size measurement on live animals is a reliable indicator trait for dried pelt nap size. However, nonsignificant (p > 0.05) low genetic correlation (±SE) was obtained between LQU and DQU (0.08 ± 0.45), showing that indirect selection based on live grading might not lead to the satisfactory improvement of dried pelt overall quality. The estimated genetic parameters for live grading, dried pelt quality, and body weight and body length traits may be incorporated into breeding programs to improve fur characteristics in Canadian mink populations

    Genome Wide Association Studies (GWAS) Identify QTL on SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred Commercial Pigs.

    No full text
    Of all the meat quality traits, tenderness is considered the most important with regard to eating quality and market value. In this study we have utilised genome wide association studies (GWAS) for peak shear force (PSF) of loin muscle as a measure of tenderness for 1,976 crossbred commercial pigs, genotyped for 42,721 informative SNPs using the Illumina PorcineSNP60 Beadchip. Four 1 Mb genomic regions, three on SSC2 (at 4 Mb, 5 Mb and 109 Mb) and one on SSC17 (at 20 Mb), were detected which collectively explained about 15.30% and 3.07% of the total genetic and phenotypic variance for PSF respectively. Markers ASGA0008566, ASGA0008695, DRGA0003285 and ASGA0075615 in the four regions were strongly associated with the effects. Analysis of the reference genome sequence in the region with the most important SNPs for SSC2_5 identified FRMD8, SLC25A45 and LTBP3 as potential candidate genes for meat tenderness on the basis of functional annotation of these genes. The region SSC2_109 was close to a previously reported candidate gene CAST; however, the very weak LD between DRGA0003285 (the best marker representing region SSC2_109) and CAST indicated the potential for additional genes which are distinct from, or interact with, CAST to affect meat tenderness. Limited information of known genes in regions SSC2_109 and SSC17_20 restricts further analysis. Re-sequencing of these regions for informative animals may help to resolve the molecular architecture and identify new candidate genes and causative mutations affecting this trait. These findings contribute significantly to our knowledge of the genomic regions affecting pork shear force and will potentially lead to new insights into the molecular mechanisms regulating meat tenderness
    corecore