7,344 research outputs found

    Large anisotropy in the optical conductivity of YNi2B2C

    Full text link
    The optical properties of YNi2_2B2_2C are studied by using the first-principles full-potential linearized augmented plane wave (FLAPW) method within the local density approximation. Anisotropic behavior is obtained in the optical conductivity, even though the electronic structure shows 3D character. A large peak in σz\sigma_z is obtained at 2.4 eV. The anisotropic optical properties are analyzed in terms of interband transitions between energy levels and found that the Ni site plays an important role. The electronic energy loss spectroscopy (EELS) spectra are also calculated to help elucidate the anisotropic properties in this system.Comment: revtex4, 4 pages, 5 figures, to appear in PR

    Biomechanical Gait Variable Estimation Using Wearable Sensors after Unilateral Total Knee Arthroplasty

    Get PDF
    Total knee arthroplasty is a common surgical treatment for end-stage osteoarthritis of the knee. The majority of existing studies that have explored the relationship between recovery and gait biomechanics have been conducted in laboratory settings. However, seamless gait parameter monitoring in real-world conditions may provide a better understanding of recovery post-surgery. The purpose of this study was to estimate kinematic and kinetic gait variables using two ankle-worn wearable sensors in individuals after unilateral total knee arthroplasty. Eighteen subjects at least six months post-unilateral total knee arthroplasty participated in this study. Four biomechanical gait variables were measured using an instrumented split-belt treadmill and motion capture systems. Concurrently, eleven inertial gait variables were extracted from two ankle-worn accelerometers. Subsets of the inertial gait variables for each biomechanical gait variable estimation were statistically selected. Then, hierarchical regressions were created to determine the directional contributions of the inertial gait variables for biomechanical gait variable estimations. Selected inertial gait variables significantly predicted trial-averaged biomechanical gait variables. Moreover, strong directionally-aligned relationships were observed. Wearable-based gait monitoring of multiple and sequential kinetic gait variables in daily life could provide a more accurate understanding of the relationships between movement patterns and recovery from total knee arthroplasty

    Thermo-viscoplastic analysis of hypersonic structures subjected to severe aerodynamic heating

    Get PDF
    A thermoviscoplastic computational method for hypersonic structures is presented. The method employs unified viscoplastic constitutive model implemented in a finite element approach for quasi-static thermal-structural analysis. Applications of the approach to convectively cooled hypersonic structures illustrate the effectiveness of the approach and provide insight into the transient inelastic structural behavior at elevated temperatures
    corecore