62 research outputs found

    Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy: A Review of the Literature

    Get PDF
    Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is an autoimmune disease of the nervous system first defined in 2016. GFAP autoantibody, especially IgG that binds to GFAPα, has been reported in the cerebrospinal fluid (CSF) and serum of patients with GFAP astrocytopathy. The positive predictive value of GFAP antibody in the CSF is higher than in the serum. Tissue-based assay (TBA) and cell-based assay (CBA) are both recommended methods for the detection of GFAP antibody. GFAP astrocytopathy is accompanied by neoplasms, but the relationship between virus infection and GFAP astrocytopathy is unclear. GFAP antibody itself does not induce pathological changes; it is only a biomarker for the process of immune inflammation. The pathology of GFAP astrocytopathy in humans is heterogeneous. GFAP astrocytopathy is commonly diagnosed in individuals over 40 years old and most patients have an acute or subacute onset. Clinical manifestations include fever, headache, encephalopathy, involuntary movement, myelitis, and abnormal vision. Lesions involve the subcortical white matter, basal ganglia, hypothalamus, brainstem, cerebellum, and spinal cord. The characteristic MRI feature is brain linear perivascular radial gadolinium enhancement in the white matter perpendicular to the ventricle. Currently, there are no uniform diagnostic criteria or consensus for GFAP astrocytopathy and coexisting neural autoantibodies detected in the same patient make the diagnosis difficult. A standard treatment regimen is yet to be developed. Most GFAP astrocytopathy patients respond well to steroid therapy although some patients are prone to relapse or even die

    And\^o dilations for a pair of commuting contractions: two explicit constructions and functional models

    Full text link
    One of the most important results in operator theory is And\^o's \cite{ando} generalization of dilation theory for a single contraction to a pair of commuting contractions acting on a Hilbert space. While there are two explicit constructions (Sch\"affer \cite{sfr} and Douglas \cite{Doug-Dilation}) of the minimal isometric dilation of a single contraction, there was no such explicit construction of an And\^o dilation for a commuting pair (T1,T2)(T_1,T_2) of contractions, except in some special cases \cite{A-M-Dist-Var, D-S, D-S-S}. In this paper, we give two new proofs of And\^o's dilation theorem by giving both Sch\"affer-type and Douglas-type explicit constructions of an And\^o dilation with function-theoretic interpretation, for the general case. The results, in particular, give a complete description of all possible factorizations of a given contraction TT into the product of two commuting contractions. Unlike the one-variable case, two minimal And\^o dilations need not be unitarily equivalent. However, we show that the compressions of the two And\^o dilations constructed in this paper to the minimal dilation spaces of the contraction T1T2T_1T_2, are unitarily equivalent. In the special case when the product T=T1T2T=T_1T_2 is pure, i.e., if T∗n→0T^{* n}\to 0 strongly, an And\^o dilation was constructed recently in \cite{D-S-S}, which, as this paper will show, is a corollary to the Douglas-type construction. We define a notion of characteristic triple for a pair of commuting contractions and a notion of coincidence for such triples. We prove that two pairs of commuting contractions with their products being pure contractions are unitarily equivalent if and only if their characteristic triples coincide. We also characterize triples which qualify as the characteristic triple for some pair (T1,T2)(T_1,T_2) of commuting contractions such that T1T2T_1T_2 is a pure contraction.Comment: 24 page

    Development of a synchronous recording and photo-stimulating electrode in multiple brain neurons

    Get PDF
    The investigation of brain networks and neural circuits involves the crucial aspects of observing and modulating neurophysiological activity. Recently, opto-electrodes have emerged as an efficient tool for electrophysiological recording and optogenetic stimulation, which has greatly facilitated the analysis of neural coding. However, implantation and electrode weight control have posed significant challenges in achieving long-term and multi-regional brain recording and stimulation. To address this issue, we have developed a mold and custom-printed circuit board-based opto-electrode. We report successful opto-electrode placement and high-quality electrophysiological recordings from the default mode network (DMN) of the mouse brain. This novel opto-electrode facilitates synchronous recording and stimulation in multiple brain regions and holds promise for advancing future research on neural circuits and networks

    Brain Embolism Secondary to Cardiac Myxoma in Fifteen Chinese Patients

    No full text
    Background. Heart myxoma-related embolisms commonly involve the central nervous system, but data are lacking in Chinese patients. Methods. 27 patients diagnosed with myxoma were reviewed retrospectively. Results. Among 27 patients, fourteen (51.9%) patients were women. Fifteen (55.6%) patients had brain embolisms. Rarely, patients were misdiagnosed with central nervous system vasculitis (n = 2), moyamoya disease (n = 1), and neuromyelitis optica (n = 1). We found positive associations between mRS (>3) and female gender (r = 0.873, P10 × 109/L (r = 0.722, P = 0.002), tumour size (r = 0.866, P0.05). Conclusions. Neurologic manifestations in Chinese patients with cardiac myxoma-related stroke were complicated and multifarious. Female gender, infection, other severe complications, low SBP, tumour size, bilateral brain lesions, TACI, and high WBC counts could be associated with a poor prognosis

    Study on the Influence and Rapid Prediction of Wind on water level for Open Channel Water Transfer Project

    No full text
    Taking the typical main canal of the Middle Route of South-to-North Water Transfer project as an example, the numerical simulation study on the variation law of water level before sluice under different wind conditions is carried out. First, based on numerical simulation, mathematical induction, and statistical analysis method, the influences of wind speed, wind duration and wind direction on water level fluctuation are put forward and the fast prediction formula of maximum water level fluctuation under wind influence is extracted. Then, the feasibility of the fast prediction formula is verified by the actual monitoring data. The results show that: (1) the duration of wind has little influence on the maximum water level variation, and the maximum error is 9.83 %; (2) the maximum water level amplitude increases with increasing wind speed and decreases with increasing wind source distance; (3) the whole water level variation is symmetrical about the angle α=180°, and 0° to 90° is a period of maximum water level variation; (4) the error between the calculation result of the fast prediction formula and the measured result is 1.25 %, which shows that the maximum water level prediction formula is relatively applicable to open channel water transfer project. These research results provide a scientific basis for routine dispatching of water conveyance projects

    Study on the Influence and Rapid Prediction of Wind on water level for Open Channel Water Transfer Project

    No full text
    Taking the typical main canal of the Middle Route of South-to-North Water Transfer project as an example, the numerical simulation study on the variation law of water level before sluice under different wind conditions is carried out. First, based on numerical simulation, mathematical induction, and statistical analysis method, the influences of wind speed, wind duration and wind direction on water level fluctuation are put forward and the fast prediction formula of maximum water level fluctuation under wind influence is extracted. Then, the feasibility of the fast prediction formula is verified by the actual monitoring data. The results show that: (1) the duration of wind has little influence on the maximum water level variation, and the maximum error is 9.83 %; (2) the maximum water level amplitude increases with increasing wind speed and decreases with increasing wind source distance; (3) the whole water level variation is symmetrical about the angle α=180°, and 0° to 90° is a period of maximum water level variation; (4) the error between the calculation result of the fast prediction formula and the measured result is 1.25 %, which shows that the maximum water level prediction formula is relatively applicable to open channel water transfer project. These research results provide a scientific basis for routine dispatching of water conveyance projects

    Integrated Assessment Method of Emergency Plan for Sudden Water Pollution Accidents Based on Improved TOPSIS, Shannon Entropy and a Coordinated Development Degree Model

    No full text
    Water is the source of all things, so it can be said that without the sustainable development of water resources, there can be no sustainable development of human beings. In recent years, sudden water pollution accidents have occurred frequently. Emergency response plan optimization is the key to handling accidents. Nevertheless, the non-linear relationship between various indicators and emergency plans has greatly prevented researchers from making reasonable assessments. Thus, an integrated assessment method is proposed by incorporating an improved technique for order preference by similarity to ideal solution, Shannon entropy and a Coordinated development degree model to evaluate emergency plans. The Shannon entropy method was used to analyze different types of index values. TOPSIS is used to calculate the relative closeness to the ideal solution. The coordinated development degree model is applied to express the relationship between the relative closeness and inhomogeneity of the emergency plan. This method is tested in the decision support system of the Middle Route Construction and Administration Bureau, China. By considering the different nature of the indicators, the integrated assessment method is eventually proven as a highly realistic method for assessing emergency plans. The advantages of this method are more prominent when there are more indicators of the evaluation object and the nature of each indicator is quite different. In summary, this integrated assessment method can provide a targeted reference or guidance for emergency control decision makers

    A Study on Comprehensive Evaluation Methods for Coordinated Development of Water Diversion Projects Based on Advanced SWOT Analysis and Coupling Coordination Model

    No full text
    The implementation of water diversion projects will exert different influences on upstream water offering areas and the downstream water receiving areas. In order to effectively promote the coordinated development of the two regions, a comprehensive evaluation system for the coordinated development of water transfer projects has been proposed with the Middle Route of the South-to-North Water Transfer Project as the research object. The system conducts a multidimensional evaluation of social development, economic development, and ecological environmental impact, and builds a comprehensive evaluation index system with fifteen evaluation indexes at three levels, with the indexes weighted through the comprehensive weighting method based on the combination of the G1 method and the entropy weight method. Based on the degree of coordinated development among various systems, the coordinated development of the Middle Route of the South–North Water Transfer Project is graded through a comprehensive evaluation. This method is tested in the decision support system of the Middle Route Construction and Administration Bureau, China. The results show that: (1) The coupling coordination degree value of the middle route of the South-to-North Water Diversion Project is 0.8912, which shows that the regional development of the water transfer project is high coupled coordination. (2) The coordination between the economic system and the ecological environment system is weaker than the coordination between the economic system and the social service system, and the coordination between the ecological and social services is the best. Finally, based on an advanced SWOT analysis of the future development of the middle route of the South-to-North Water Diversion Project, effective suggestions for regional development are provided. It provides reference or guidance for the competent authority to manage the water diversion project and the central government to comprehensively evaluate the effectiveness of the water diversion project
    • …
    corecore