101 research outputs found

    Application of bronchoscopic argon plasma coagulation in the treatment of tumorous endobronchial tuberculosis: Historical controlled trial

    Get PDF
    ObjectiveThe purpose of this study was to evaluate the efficacy and safety of bronchoscopic argon plasma coagulation for tumorous endobronchial tuberculosis.MethodsWe analyzed the records of 115 patients with tumorous endobronchial tuberculosis who did not show luminal narrowing of the bronchus at diagnosis. Of these 115 patients, 41 patients received bronchoscopic argon plasma coagulation plus routine antituberculosis chemotherapy (argon plasma coagulation group) and the other 74 patients received only routine antituberculosis chemotherapy (chemotherapy group). The treatment effects between these 2 groups were compared based on changes in lesions, rate of lesion disappearance, and complications associated with bronchoscopic argon plasma coagulation.ResultsThe complete removal rate was 100% in patients in argon plasma coagulation group. About 84.6% lesions disappeared completely in patients in the chemotherapy group. The rate of disappearance of lesions in the argon plasma coagulation group was faster than that of the chemotherapy group. There were no severe complications in the argon plasma coagulation group.ConclusionsBronchoscopic argon plasma coagulation can accelerate the healing of tumorous endobronchial tuberculosis and can help prevent progressive bronchial stenosis resulting from tumorous endobronchial tuberculosis, and it is a very safe method

    Fault Separation Based on An Excitation Operator with Application to a Quadrotor UAV

    Full text link
    This paper presents an excitation operator based fault separation architecture for a quadrotor unmanned aerial vehicle (UAV) subject to loss of effectiveness (LoE) faults, actuator aging, and load uncertainty. The actuator fault dynamics is deeply excavated, containing the deep coupling information among the actuator faults, the system states, and control inputs. By explicitly considering the physical constraints and tracking performance, an excitation operator and corresponding integrated state observer are designed to estimate separately actuator fault and load uncertainty. Moreover, a fault separation maneuver and a safety controller are proposed to ensure the tracking performance when the excitation operator is injected. Both comparative simulation and flight experiments have demonstrated the effectiveness of the proposed scheme while maintaining high levels of tracking performance

    The Research Value of Biphasic Registration Quantitative Computed Tomography Emphysema Index in the Evaluation of Mild to Moderate COPD

    Get PDF
    Objective: To find the optimal quantitative index of emphysema by comparing and analyzing the quantitative indexes of emphysema in patients with mild to moderate chronic obstruction pulmonary disease (COPD) via registered biphasic quantitative computed tomography (QCT). Methods: We retrospectively collected 55 healthy controls, 21 Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD) 1 case, and 31 GOLD 2 cases in our hospital. We imported the CT raw DICOM data into the "Digital Lung" analysis platform and measured the LAA-950% at the end of deep inspiration and the LAA-910% at the end of deep expiration. The expiratory and inspiratory CT images were registered. Then, the percentage of emphysema area (PRMEmph%), the percentage of functional small airway disease area (PRMfSAD%), and the percentage of the normal area (PRMNormal%) were calculated according to the threshold method. Pulmonary function indicators included FVC, FEV1%, and FEV1/FVC. Differences in general data, CT quantitative indexes, and pulmonary function between groups were assessed using the independent sample t-test, Mann–Whitney U test, or chi-square test, and the correlation was analyzed using Spearman correlation. The receiver operating characteristic (ROC) curve was drawn to analyze the diagnostic performance of CT quantitative parameters for emphysema in patients with mild to moderate COPD. Results: There were significant differences in sex, smoking index, FEV1%, FEV1/FVC, inspiratory phase LAA%-950, expiratory phase LAA%-910, PRMEmph%, PRMfSAD%, and PRMNormal% between the mild to moderate COPD patients and normal control groups. The inspiratory phase LAA%-950 was negatively correlated with FEV1/FVC, the expiratory phase LAA%-910 and PRMEmph% were negatively correlated with FVC, FEV1%, and FEV1/FVC. ROC curve analysis results showed that the areas under the curve of inspiration phase LAA%-950, expiratory phase LAA%-910, and PRMEmph% were 0.742, 0.861, and 0.876, respectively. Among them, the area under the curve of the PRMEmph% index was the largest, with a corresponding critical value of 9.84%, a sensitivity of 76.90%, and a specificity of 94.50%. Conclusion: Quantitative CT emphysema index LAA%-950 in the inspiratory phase, LAA%-910 in the expiratory phase, and PRMEmph% in biphasic can objectively evaluate emphysema in patients with mild to moderate COPD, among which PRMEmph% is the best evaluation index

    The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To define a threshold value of apparent diffusion coefficient (ADC) with which malignant breast lesions can be distinguished from benign lesions, and to evaluate the ADC change of peri-tumor tissue in breast carcinoma by echo planar-diffusion weighted imaging (EPI-DWI).</p> <p>Methods</p> <p>57 breast lesions were scanned by routine MRI and EPI-DWI. The ADC values were compared between malignant and benign lesions. The sensitivity and specificity of EPI-DWI and the threshold ADC value were evaluated by Receiver Operating Characteristic curve (ROC). The ADC values of malignant lesion and layered peri-tumor tissues (from innermost layer 1 to outermost layer 4 with 5 mm every layer) in different directions were compared and the ADC values among different layers were compared.</p> <p>Results</p> <p>The ADC value of 35 malignant lesions was statistically lower than that of 22 benign lesions (P < 0.05). In ROC curve, the threshold value was 1.24 +/- 0.25*10E-3 mm<sup>2</sup>/s (b = 500) or 1.20 +/- 0.25*10E-3 mm<sup>2</sup>/s (b = 1000). The ADC value of malignant lesions was statistically lower than that of peri-tumor tissues in different directions (P < 0.05). For peri-tumor tissues, the ADC values increased gradually from layer 1 to layer 4 and there was a significant difference between the ADC values of layer 1 and layer 2 (P < 0.05); while from layer 2 outwards, there was no statistical difference among different layers.</p> <p>Conclusion</p> <p>ADC value was a sensitive and specific parameter that could help to differentiate benign and malignant breast lesions. ADC changes in tissues adjacent to breast carcinoma could be detected by EPI-DWI, which made EPI-DWI a promising method for helping to determine surgical scope of breast carcinoma.</p

    Research on underground multi-system fusion method for coal mine safety monitoring and control

    No full text
    According to the requirements for underground multi-system fusion of Technology schemes of upgrading of coal mine safety monitoring and control system, and for the problem that fusion degree of underground monitoring and control system was not high, a new fusion sub-station with multi-communication interface and multi-sensor interface was designed. Based on the new fusion sub-station, an underground multi-system fusion method for coal mine safety monitoring and control was proposed. The fusion method adopts the new fusion sub-station to realize link level fusion, device level fusion and shared data level fusion according to field equipment acquisition interfaces, communication interfaces and fusion degree of different systems. The link level fusion can realize fusion of multiple sensor acquisition interfaces, device level fusion can realize equipment fusion of different systems, shared data level fusion can realize data sharing between different systems

    Prescribed performance-based powered descent guidance for step-shaped hazardous terrains

    No full text
    The planetary powered descent guidance problem for step-shaped hazardous terrains is investigated in this article based on prescribed performance function (PPF) methodology. Initially, the distances between the lander and step-shaped terrains around the landing site have been formulated in a new form boundaryfunction using PPF, in which a new step-shaped boundary PPF is specifically designed to constrain the lateral motion. Furthermore, a fixed-time convergent PPF is chosen to coordinate the vertical motion. Next, to avoid the collision with step-shaped terrains and planetary surface, a feedback guidance algorithm is proposed based on the backstepping method. Considering a large guidance gain is beneficial for the lander to move away from the boundary PPF, but excessive control acceleration will be generated when the landing error is large. To solve this problem, an adaptive guidance gain is designed using Gaussian function. Finally, the feasibility and effectiveness of the proposed algorithm have been verified through typical numerical simulations inspired by realistic Martian terrains. Moreover, this attempt using PPF methodology here can be easily reformulated to adjust the powered descent problem with collision avoidance for a flat surface or glide-slope constraint.</p

    Zirconium Doping Effect on the Performance of Proton-Conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications

    No full text
    High-temperature proton conductors are promising electrolytes for protonic solid oxide fuel cells (H+-SOFCs). In this study, the relationship between the Zr doping content and structure, chemical stability, carbon dioxide resistivity, sinterability and electrochemical properties of BaZryCe0.8-yY0.2O3-d (BZCYy), 0.0 = y = 0.8, are studied systemically using XRD, CO2-TPD, SEM, EIS and I-V polarization characterizations. Zr doping suppresses carbonate formation, CO2-TPD demonstrates that the formative rate of carbonate over BZCYy are 7.50 × 10-6 and 8.70 × 10-7 mol m-2 min-1 at y = 0.0 and 0.4, respectively. Investigation of sinterability shows that the anode-supported configuration helps the sintering of the thin-film electrolyte. Peak power densities of 220 and 84 mW cm-2 are obtained at 750 and 450 °C, respectively, with BZCY0.4 electrolyte. Due to the favorable chemical stability against CO2 and good sintering in the thin-film configuration, BZCY0.4 is a potential electrolyte material for H+-SOFCs. © 2009 Elsevier B.V. All rights reserved

    Barrier Lyapunov function-based planetary landing guidance for hazardous terrains

    No full text
    The landing guidance based on the barrier Lyapunov function (BLF) for hazardous terrains is investigated. Three suitable spatial geometric shapes (frustum-shape, cone-shape, and &lt;formula&gt;&lt;tex&gt;nn&lt;/tex&gt;&lt;/formula&gt;-step-shape) have been chosen to describe the possible obstacles on the planetary surface. Next, a novel and general form of the barrier function (BF) has been developed using selected spatial geometric shape information, specifically designed to constrain the lateral motion. For these three different spatial geometric shapes, only the segment number of BF is different, and the segment number is determined by the spatial geometric shape. Furthermore, a fixed-time convergent function is selected as the upper boundary to coordinate the vertical motion, guaranteeing that the lander completes the landing mission within the predefined time. Next, a new nonlinear feedback guidance is designed using the asymmetric BLF constructed by the BF, keeping the lander from colliding with the obstacle and achieving the pinpoint soft landing. Finally, numerical simulations with different hazardous terrains are performed to verify the feasibility and effectiveness of the proposed algorithms.</p
    • …
    corecore