32 research outputs found

    Genome-wide analysis of rice cis-natural antisense transcription under cadmium exposure using strand-specific RNA-Seq

    No full text
    Abstract Background The elucidation of novel transcripts and their expression in response to various stress conditions is necessary to understand the transcriptional network of plants as an adaptation to biotic and abiotic stresses. We performed strand-specific RNA-Seq (ssRNA-Seq) on rice exposed to cadmium (Cd) for 24Ā h and investigated the expression of cis-natural antisense transcripts (cis-NATs), a class of endogenous coding or non-protein-coding RNAs with sequence complementarity to the opposite strands of RAP transcripts. Results Many RAP transcripts possessed cis-NATs and these cis-NATs were responsive to some extent. Cis-NATs were upregulated from 26, 266 and 409 RAP gene loci, while 2054, 2501 and 2825 RAP transcripts were upregulated from 38,123 RAP loci under high Cd exposure in roots at 1, 12 and 24Ā h, respectively. In addition, most of the upregulated cis-NATs showed little upregulation under ABA or cold treatment. A number of cis-NATs were upregulated from less than 35 RAP gene loci in different tissue and time-point combinations under low Cd exposure, suggesting that cis-NATs respond to environmental stress. Furthermore, 409 RAP transcripts with upregulated cis-NATs were classified into three groups based on the expression of the RAP transcripts from the opposite DNA strand, including 138 upregulated, 128 invariable, and 143 downregulated transcripts, although the responses of cis-NATs and RAP transcripts were not always correlated. Conclusions We have shown that the cis-NATs identified by ssRNA-Seq analysis are novel genes and that some of them are stress-specific and show different responses depending on the degree of stress and tissue. These results improve our understanding of the complete molecular mechanism of plant adaptation to Cd exposure

    Genome-Wide Transcriptome Analysis of Cadmium Stress in Rice

    No full text
    Rice growth is severely affected by toxic concentrations of the nonessential heavy metal cadmium (Cd). To elucidate the molecular basis of the response to Cd stress, we performed mRNA sequencing of rice following our previous study on exposure to high concentrations of Cd (Oono et al., 2014). In this study, rice plants were hydroponically treated with low concentrations of Cd and approximately 211 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence. Many genes, including some identified under high Cd concentration exposure in our previous study, were found to be responsive to low Cd exposure, with an average of about 11,000 transcripts from each condition. However, genes expressed constitutively across the developmental course responded only slightly to low Cd concentrations, in contrast to their clear response to high Cd concentration, which causes fatal damage to rice seedlings according to phenotypic changes. The expression of metal ion transporter genes tended to correlate with Cd concentration, suggesting the potential of the RNA-Seq strategy to reveal novel Cd-responsive transporters by analyzing gene expression under different Cd concentrations. This study could help to develop novel strategies for improving tolerance to Cd exposure in rice and other cereal crops

    Genome-Wide Analysis of <i>Snf2</i> Gene Family Reveals Potential Role in Regulation of Spike Development in Barley

    No full text
    Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family has been characterized in several plant species; some of its members regulate flower development in Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare). Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed that segmental duplication contributed predominantly to the expansion of the family in barley, and the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these genes were subjected to purification selection during barley domestication. Most were expressed abundantly during spike development. This study provides a comprehensive characterization of barley Snf2 family members, which should help to improve our understanding of their potential regulatory roles in barley spike development

    Simultaneous RNA-Seq Analysis of a Mixed Transcriptome of Rice and Blast Fungus Interaction

    Get PDF
    <div><p>A filamentous fungus, <em>Magnaporthe oryzae</em>, is a causal agent of rice blast disease, which is one of the most serious diseases affecting cultivated rice, <em>Oryza sativa</em>. However, the molecular mechanisms underlying both rice defense and fungal attack are not yet fully understood. Extensive past studies have characterized many infection-responsive genes in the pathogen and host plant, separately. To understand the plant-pathogen interaction comprehensively, it is valuable to monitor the gene expression profiles of both interacting organisms simultaneously in the same infected plant tissue. Although the host-pathogen interaction during the initial infection stage is important for the establishment of infection, the detection of fungal gene expression in infected leaves at the stage has been difficult because very few numbers of fungal cells are present. Using the emerging RNA-Seq technique, which has a wide dynamic range for expression analyses, we analyzed the mixed transcriptome of rice and blast fungus in infected leaves at 24 hours post-inoculation, which is the point when the primary infection hyphae penetrate leaf epidermal cells. We demonstrated that our method detected the gene expression of both the host plant and pathogen simultaneously in the same infected leaf blades in natural infection conditions without any artificial treatments. The upregulation of 240 fungal transcripts encoding putative secreted proteins was observed, suggesting that these candidates of fungal effector genes may play important roles in initial infection processes. The upregulation of transcripts encoding glycosyl hydrolases, cutinases and LysM domain-containing proteins were observed in the blast fungus, whereas pathogenesis-related and phytoalexin biosynthetic genes were upregulated in rice. Furthermore, more drastic changes in expression were observed in the incompatible interactions compared with the compatible ones in both rice and blast fungus at this stage. Our mixed transcriptome analysis is useful for the simultaneous elucidation of the tactics of host plant defense and pathogen attack.</p> </div

    Schematic representation of RNA-seq analysis of mixed transcriptome obtained from blast fungus-infected rice leaves.

    No full text
    <p>First, mRNA were extracted from the <i>Oryza sativa</i> ssp. <i>japonica</i> cv. Nipponbare (Pia) rice leaf blades 24 hours after water treatment (rice, control) and inoculation (rice+blast fungus, infected, 24hpi), and also from conidial suspensions of the compatible and incompatible blast strains (blast fungus, control). RNA-Seq were conducted for each sample using the illumine GAIIx sequencer. In the preprocessing of reads, low quality bases, adapter sequences, rRNA sequences and too short reads (<20 bp) were removed. For the rice analysis, all of the preprocessed reads were mapped to the fungal genome to filter out contaminated fungal reads. For the fungal analysis, contaminated rice reads were removed by mapping all of the reads against the rice genome. Finally, all of the filtered reads were mapped to the reference genomes by TopHat and transcript structures are predicted by Cufflinks. For each rice and fungal transcript, expression levels were estimated using the numbers of uniquely mapped reads to the transcript structures.</p

    Distribution of fold-changes of rice and fungal significantly upregulated transcripts.

    No full text
    <p>The fold-changes (log<sub>2</sub>) of the significantly upregulated transcripts in the compatible and incompatible interactions are plotted for (A) rice and (B) blast fungus. The colors represent the types of interactions in which the upregulations occurred (black: Common, blue: COM-specific, red: INC-specific).</p
    corecore