27 research outputs found

    Endothelial glycocalyx injury is involved in heatstroke-associated coagulopathy and protected by N-acetylcysteine

    Get PDF
    IntroductionDamage to endothelial glycocalyx (EGCX) can lead to coagulation disorders in sepsis. Heat stroke (HS) resembles sepsis in many aspects; however, it is unclear whether EGCX injury is involved in its pathophysiology. The purpose of this study was to examine the relationship between the damage of EGCX and the development of coagulation disorders during HS.MethodsWe retrospectively collected 159 HS patients and analyzed coagulation characteristics and prognosis of HS patients with or without disseminated intravascular coagulation (DIC). We also replicated a rat HS model and measured coagulation indexes, pulmonary capillary EGCX injury in HS rats. Finally, we evaluated the effect of the antioxidant N-acetylcysteine (NAC) on HS-initiated EGCX injury and coagulation disorders.ResultsClinical data showed that HS patients complicated with DIC had a higher risk of death than HS patients without DIC. In a rat HS model, we found that rats subjected to heat stress developed hypercoagulability and platelet activation at the core body temperature of 43°C, just before the onset of HS. At 24 h of HS, the rats showed a consumptive hypo-coagulation state. The pulmonary capillary EGCX started to shed at 0 h of HS and became more severe at 24 h of HS. Importantly, pretreatment with NAC substantially alleviated EGCX damage and reversed the hypo-coagulation state in HS rats. Mechanically, HS initiated reactive oxidative species (ROS) generation, while ROS could directly cause EGCX damage. Critically, NAC protected against EGCX injury by attenuating ROS production in heat-stressed or hydrogen peroxide (H2O2)-stimulated endothelial cells.DiscussionOur results indicate that the poor prognosis of HS patients correlates with severe coagulation disorders, coagulation abnormalities in HS rats are associated with the damage of EGCX, and NAC improves HS-induced coagulopathy, probably through its protection against EGCX injury by preventing ROS generation

    An In-Orbit Stereo Navigation Camera Self-Calibration Method for Planetary Rovers with Multiple Constraints

    No full text
    In order to complete the high-precision calibration of the planetary rover navigation camera using limited initial data in-orbit, we proposed a joint adjustment model with additional multiple constraints. Specifically, a base model was first established based on the bundle adjustment model, second-order radial and tangential distortion parameters. Then, combining the constraints of collinearity, coplanarity, known distance and relative pose invariance, a joint adjustment model was constructed to realize the in orbit self-calibration of the navigation camera. Given the problem of directionality in line extraction of the solar panel due to large differences in the gradient amplitude, an adaptive brightness-weighted line extraction method was proposed. Lastly, the Levenberg-Marquardt algorithm for nonlinear least squares was used to obtain the optimal results. To verify the proposed method, field experiments and in-orbit experiments were carried out. The results suggested that the proposed method was more accurate than the self-calibration bundle adjustment method, CAHVOR method (a camera model used in machine vision for three-dimensional measurements), and vanishing points method. The average error for the flag of China and the optical solar reflector was only 1 mm and 0.7 mm, respectively. In addition, the proposed method has been implemented in China’s deep space exploration missions

    Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine

    No full text
    The rapid development of peanut mechanization has increased the amount of dust expelled from peanut mechanized operations, which degrades the air quality and endangers the health of agricultural workers. Therefore, the purpose of this study is to figure out the characteristics of dust emission from mechanized peanut harvesting. To this end, the particulate matters of diameters ≤ 2.5 μm and ≤10 μm and the total suspended particles were sampled in real time during peanut harvesting in Henan Province, China, and the airborne particle concentrations and particle size distributions were measured. The dust particles discharged during the mechanized peanut harvesting were concentrated within the 2~30 µm size range. When the wind speed was reduced below the settling velocity of the largest particles, the more massive particles were carried in the downwind. The amount of free silica in the dust samples was determined by X-ray diffraction analysis. Both the total dust and free silica concentrations exceeded the occupational exposure and threshold limits. To improve the characteristics of dust emission, the microstructure and dispersion of the dust were also investigated. Reducing the agricultural operations during periods of high wind speed, low crop-moisture content, and low air humidity is recommended for reducing the dust exposure of workers. The results will provide guidance and technical support for reducing the dust emissions of mechanized harvesting operations, improving air quality, and reducing the health hazards to operators

    The Ca 2+

    No full text

    Research on the Development Status of Biomass Energy Serving the Construction of Ecological Civilization: A Case Study in Henan Province, China

    Get PDF
    The development and utilization of biomass energy based on the thermochemical conversion of crop biomass to produce hydrogen are of great significance for promoting China’s ecological civilization construction, energy revolution, and low-carbon economic development. Henan province is one of the largest agricultural and pasturage provinces in China. Based on the analysis of the status and trends of Henan's biomass energy (BE) development, this paper summarizes the present status of the construction of ecological civilization (CEC) and the factors restricting its development. Challenges in developing biomass energy are analyzed systematically, and strategies and key technical directions for future biomass energy development are discussed. Finally, the paper presents countermeasures and suggestions for CEC based on the development of BE, which will vigorously promote the development and utilization of BE and the process of CEC. This research provides a reference for the further development of BE and CEC in the future
    corecore