17,101 research outputs found
Exotic Topological States with Raman-Induced Spin-Orbit Coupling
We propose a simple experimental scheme to realize simultaneously the
one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold
pseudospin- atomic Fermi gases trapped in square optical lattices. In the
absence of interspecies interactions, the system supports gapped Chern
insulators and gapless topological semimetal states. By turning on the -wave
interactions, a rich variety of gapped and gapless inhomogeneous topological
superfluids can emerge. In particular, a gapped topological Fulde-Ferrell
superfluid, in which the chiral edge states at opposite boundaries possess the
same chirality, is predicted.Comment: 11 pages, 6 figure
Full one-loop electroweak radiative corrections to single photon production in e+e-
Large scale calculation for the radiative corrections required for the
current and future collider experiments can be done automatically using the
GRACE-LOOP system. Here several results for e+e- --> 3-body processes are
presented including e+e- --> e+e-H and e+e- --> nu nubar gamma.Comment: 5 pages, contribution to ACAT03(Dec. 2003
Self-consistent models of triaxial galaxies in MOND gravity
The Bekenstein-Milgrom gravity theory with a modified Poisson equation is
tested here for the existence of triaxial equilibrium solutions. Using the
non-negative least square method, we show that self-consistent triaxial
galaxies exist for baryonic models with a mild density cusp . Self-consistency is achieved for a wide range of central
concentrations, , representing
low-to-high surface brightness galaxies. Our results demonstrate for the first
time that the orbit superposition technique is fruitful for constructing galaxy
models beyond Newtonian gravity, and triaxial cuspy galaxies might exist
without the help of Cold dark Matter.Comment: 19 pages, 1 table, 7 figures, Accepted for publication in Ap
Generation of 3-Dimensional graph state with Josephson charge qubits
On the basis of generations of 1-dimensional and 2-dimensional graph states,
we generate a 3-dimensional N3-qubit graph state based on the Josephson charge
qubits. Since any two charge qubits can be selectively and effectively coupled
by a common inductance, the controlled phase transform between any two-qubit
can be performed. Accordingly, we can generate arbitrary multi-qubit graph
states corresponding to arbitrary shape graph, which meet the expectations of
various quantum information processing schemes. All the devices in the scheme
are well within the current technology. It is a simple, scalable and feasible
scheme for the generation of various graph states based on the Josephson charge
qubits.Comment: 4 pages, 4 figure
Positivity and the electroweak hierarchy
We point out that an unnatural hierarchy between certain higher-dimensional operator coefficients in a low-energy effective field theory (EFT) would automatically imply that the Higgs' vacuum expectation value is hierarchically smaller than the EFT cutoff, assuming the EFT emerged from a unitary, causal and local UV completion. Future colliders may have the sensitivity to infer such a pattern of coefficients for a little hierarchy with an EFT cutoff up to O(10) TeV
Non-Markovian entanglement dynamics in coupled superconducting qubit systems
We theoretically analyze the entanglement generation and dynamics by coupled
Josephson junction qubits. Considering a current-biased Josephson junction
(CBJJ), we generate maximally entangled states. In particular, the entanglement
dynamics is considered as a function of the decoherence parameters, such as the
temperature, the ratio between the reservoir cutoff
frequency and the system oscillator frequency , % between
the characteristic frequency of the %quantum system of interest, and
the cut-off frequency of %Ohmic reservoir and the energy levels
split of the superconducting circuits in the non-Markovian master equation. We
analyzed the entanglement sudden death (ESD) and entanglement sudden birth
(ESB) by the non-Markovian master equation. Furthermore, we find that the
larger the ratio and the thermal energy , the shorter the
decoherence. In this superconducting qubit system we find that the entanglement
can be controlled and the ESD time can be prolonged by adjusting the
temperature and the superconducting phases which split the energy
levels.Comment: 13 pages, 3 figure
- …