30 research outputs found

    Ethanol Extract of Ulmus pumila

    Get PDF
    In this study, root bark of Ulmus pumila (U. pumila) was extracted with ethanol, and then the antimicrobial effects were tested on clinically isolated 12 MRSA strains and 1 standard MRSA strain. U. pumila showed antibacterial activities against all MRSA strains. Minimum inhibitory concentration (MIC) of U. pumila root bark against all MRSA strains revealed a range from 125 to 250 μg/mL. These results may provide the scientific basis on which U. pumila root bark has traditionally been used against infectious diseases in Korea. In real-time PCR analysis, the sub-MIC (64–125 μg/mL) concentrations of U. pumila root bark extract showed the inhibition of the genetic expressions of virulence factors such as mecA, sea, agrA, and sarA in standard MRSA. Phytochemical analyses of U. pumila root bark showed relatively strong presence of phenolics, steroids, and terpenoids. These results suggest that the ethanol extract of U. pumila root bark may have antibacterial activity against MRSA, which may be related to the phytochemicals such as phenolics, steroids, and terpenoids. Further studies are needed to determine the active constituents of U. pumila root bark responsible for such biomolecular activities

    Characterization of bone marrow derived mesenchymal stem cells in suspension

    Get PDF
    INTRODUCTION: Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). METHODS: To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. RESULTS: S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. CONCLUSIONS: These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs

    Inhibitory Effects of Chrysanthemum boreale

    Get PDF
    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors

    Chamaecyparis obtusa

    Get PDF
    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans

    "Retinoic Acid Extends the in Vitro Life Span of Normal Human Oral

    No full text
    Retinoic acid (RA) plays an important role in the regulation of cell growth and differentiation. To investigate whether RA extends in vitro the life span of human epithelial cells, we examined the effect of all-trans RA on both the cumulative population-doubling level (PDL) and the replicative senescence of cultured oral keratinocytes. When proliferating oral keratinocytes were cultured in medium containing 1 nM of all-trans RA, the in vitro life span of the cells was increased 1.5- to 1.8-fold compared to the vehicle control and the replicative senescence of the cells was significantly inhibited. Since the replicative senescence of human epithelial cells is associated with a steady increase of p16INK4A and a loss of telomerase activity, we expected that RA could delay the replicative senescence of oral keratinocytes by decreasing p16INK4A expression and/or inhibiting the loss of telomerase activity. To test this possibility, we examined the expression of replicative senescence-associated genes and the telomerase activities of different PDL numbers of oral keratinocytes exposed to 1 nM of all-trans RA. The protein level of cellular p16INK4A in the RA-treated oral keratinocytes was gradually but significantly enhanced by an increased PDL number; however, the level was significantly lower than that of the vehicle control at all of the same PDL numbers. In contrast, the telomerase activity was maintained in oral keratinocytes with increasing PDL numbers induced by RA treatment. Summarizing, these results indicate that RA induces the in vitro life-span extension of oral keratinocytes, which is linked to a decreased cellular level of p16INK4A and the maintenance of telomerase activity.This study was supported in part by a grant from the Seoul National University Research Fund (Grant 98-08-2083) (G.L.)

    Composition Analysis and Inhibitory Effect of Sterculia lychnophora

    No full text
    Pangdahai is a traditional Chinese drug, specifically described in the Chinese Pharmacopoeia as the seeds of Sterculia lychnophora Hance. Here, we separated S. lychnophora husk and kernel, analyzed the nutrient contents, and investigated the inhibitory effects of S. lychnophora ethanol extracts on cariogenic properties of Streptococcus mutans, important bacteria in dental caries and plaque formation. Ethanol extracts of S. lychnophora showed dose-dependent antibacterial activity against S. mutans with significant inhibition at concentrations higher than 0.01 mg/mL compared with the control group (p<0.05). Furthermore, biofilm formation was decreased by S. lychnophora at concentrations > 0.03 mg/mL, while bacterial viability was decreased dose-dependently at high concentrations (0.04, 0.08, 0.16, and 0.32 mg/mL). Preliminary phytochemical analysis of the ethanol extract revealed a strong presence of alkaloid, phenolics, glycosides, and peptides while the presence of steroids, terpenoids, flavonoids, and organic acids was low. The S. lychnophora husk had higher moisture and ash content than the kernel, while the protein and fat content of the husk were lower (p<0.05) than those of the kernel. These results indicate that S. lychnophora may have antibacterial effects against S. mutans, which are likely related to the alkaloid, phenolics, glycosides, and peptides, the major components of S. lychnophora

    Antibacterial Activity of Rhus javanica against Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In the present study, the leaves of Rhus javanica (R. javanica) were extracted with ethanol, and we investigated the antimicrobial activity of the ethanol extract of R. javanica against methicillin-resistant Staphylococcus aureus (MRSA). Control groups were treated with media containing 0.1% DMSO. The ethanol extract of R. javanica inhibited the growth of MRSA at concentrations ranging from 0.05 to 0.2 mg/mL and inhibited acid production at concentrations higher than 0.1 mg/mL (P<0.05). MRSA biofilm formation was determined by scanning electron microscopy and safranin staining. The ethanol extract of R. javanica inhibited the formation of MRSA biofilms at concentrations higher than 0.05 mg/mL. In confocal laser scanning microscopy, high concentration (0.4–1.6 mg/mL) of R. javanica extract showed bactericidal effect in a dose-dependent manner. In real-time PCR analysis, R. javanica extract showed the inhibition of the genetic expression of virulence factors such as mecA, sea, agrA, and sarA in MRSA. Preliminary phytochemical analysis revealed the strong presence of phenolics. These results suggest that R. javanica may be a useful medicinal plant for inhibiting MRSA, which may be related to the presence of phenolics in the R. javanica extract

    Anti-inflammatory effects of Gracilaria vermiculophylla Papenfuss extract on Porphyromonas gingivalis stimulated RAW 264.7 cells

    No full text
    276-283Seaweed Gracilaria vermiculophylla Papenfuss, commonly called as ‘Worm wart weed’, is a red alga widely distributed in the coastal areas of several countries. Though G. vermiculophylla has been reported to have antioxidant and anti-inflammatory effects, such effects on periodontal diseases remain unclear. In this study, we investigated the anti-inflammatory effects of G. vermiculophylla on the production of inflammatory cytokines in Porphyromonas gingivalis induced RAW 264.7 cells. Gracilaria vermiculophylla on that RAW 264.7 cells had no cytotoxic effect on cell viability compared with untreated controls. In P. gingivalis stimulated RAW 264.7 cells, G. vermiculophylla treatment reduced nitric oxide (NO) levels in a concentration-dependent manner by downregulating inducible nitric oxide synthase (iNOS) proteins. Reverse transcription-quantitative (RT-q) PCR inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α mRNA. Western blot analysis found that both inhibitor of kappa B alpha (IκBα) kinase (IKK) phosphorylation and IκBα degradation in P. gingivalis stimulated RAW 264.7 cells was inhibited by G. vermiculophylla in a dose-dependent manner. In addition, G. vermiculophylla treatment reduced the nuclear translocation of nuclear factor (NF)-κB p65, suggesting that the anti-inflammatory effect of G. vermiculophylla is associated with the inhibition of NF-κB signaling pathways. Overall, the findings indicate that the red alga Gracilaria vermiculophylla extract may have anti-inflammatory effects on periodontitis and can serve as a potent therapeutic agent to prevent periodontal disease
    corecore