54 research outputs found

    Interaction of dietary fat types and gut microbiome on modulation of whole body energy balance

    Get PDF
    Dietary fats and gut microbes are regarded as environmental factors for the onset of obesity. However, whether there is a direct association between dietary fat type and gut microbiome that promotes obesity remains unclear. In this study, we tested the effect of modulation of the gut microbiome by antibiotics on energy balance in Sprague Dawley rats fed a 45% high fat diet containing primarily saturated fatty acids (SFA) vs. polyunsaturated fatty acids (PUFA). Antibiotic treatment successfully decreased the gut microbiome as evidenced by decreased microbiome α-diversity and β-diversity. We found that food intake was decreased by antibiotic treatment irrespective diet. PUFA-fed rats gained less weight and consumed less food than those fed SFA independent of microbiome composition. No differences were seen in energy expenditure among the 4 groups. Gut hormone and adipokine gene and protein expression was measured in ileum, colon, white adipose tissue (WAT) and blood serum. Compared with SFA, PUFA fed rats had less ileum peptide YY , colon glucagon-like peptide-1, WAT sterol regulatory element binding transcription factor 1 and more ileum β-defensins, WAT adiponectin gene expression. However, no differences were seen in serum protein expression among the 4 groups. In conclusion, SFA are more obesogenic and promote food intake as compared to PUFA and this positive energy balance is independent of the gut microbiome. The mechanisms by which SFA modulate body weight and food intake warrant further investigation.Master of Scienc

    P3OP^{3}O: Transferring Visual Representations for Reinforcement Learning via Prompting

    Full text link
    It is important for deep reinforcement learning (DRL) algorithms to transfer their learned policies to new environments that have different visual inputs. In this paper, we introduce Prompt based Proximal Policy Optimization (P3OP^{3}O), a three-stage DRL algorithm that transfers visual representations from a target to a source environment by applying prompting. The process of P3OP^{3}O consists of three stages: pre-training, prompting, and predicting. In particular, we specify a prompt-transformer for representation conversion and propose a two-step training process to train the prompt-transformer for the target environment, while the rest of the DRL pipeline remains unchanged. We implement P3OP^{3}O and evaluate it on the OpenAI CarRacing video game. The experimental results show that P3OP^{3}O outperforms the state-of-the-art visual transferring schemes. In particular, P3OP^{3}O allows the learned policies to perform well in environments with different visual inputs, which is much more effective than retraining the policies in these environments.Comment: This paper has been accepted to be presented at the upcoming IEEE International Conference on Multimedia & Expo (ICME) in 202

    Expression of EPO and related factors in the liver and kidney of plain and Tibetan sheep

    Get PDF
    Erythropoietin (EPO), hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF2α), and vascular endothelial growth factor (VEGF) are key factors in the regulation of hypoxia, and can transcriptionally activate multiple genes under hypoxic conditions, thereby initiating large hypoxic stress in the network. The liver and kidneys are important metabolic organs of the body. We assessed the expression of EPO, HIF-1α, HIF-2α, and VEGF in liver and kidney tissues of plain and Tibetan sheep using hematoxylin and eosin staining, immunohistochemistry, and RT-qPCR. The results showed that EPO, HIF-1α, HIF-2α, and VEGF were expressed in tubular epithelial cells, collecting duct epithelial cells, mural epithelial cells, and the glomerular cytoplasm of Tibetan sheep, and their expression was significantly higher in Tibetan sheep than in plain sheep (P<0.05). EPO, HIF-1α, HIF-2α, and VEGF are expressed in hepatocytes, interlobular venous endothelial cells, and interlobular bile duct epithelial cells. In plain sheep, positive signals for EPO, HIF-1α, HIF-2α, and VEGF were localized mainly in interlobular venous endothelial cells, whereas VEGF and HIF-2α were negatively expressed in interlobular bile duct epithelial cells and positively expressed in EPO and HIF-1α. The differences in EPO, HIF-1α, and HIF-2α in Tibetan sheep were significantly higher than those in plain sheep (P<0.001). In the liver and kidney tissues of Tibetan sheep, EPO was associated with HIF-1α, HIF-2α, and VEGF (P<0.05). RT-qPCR results showed that EPO was not expressed, and HIF-1α, HIF-2α, and VEGF were expressed (P<0.05). The results showed that the expression of EPO, HIF-1α, HIF-2α, and VEGF in the kidney and liver of Tibetan sheep was higher than that in of plain sheep. Therefore, EPO, HIF-1α, HIF-2α, and VEGF may be involved in the adaptive response of plateau animals, which provides theoretical clarity to further explore the adaptive mechanism of plateau hypoxia in Tibetan sheep

    Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of plants with HrpN<sub>Ea</sub>, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid <it>Myzus persicae</it>, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the <it>Arabidopsis thaliana </it>(Arabidopsis) PP2-encoding gene <it>AtPP2-A1 </it>in resistance to <it>M. persicae </it>when the plant was treated with HrpN<sub>Ea </sub>and after the plant was transformed with <it>AtPP2-A1</it>.</p> <p>Results</p> <p>The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic <it>M. persicae </it>females on leaves of Arabidopsis plants treated with HrpN<sub>Ea </sub>and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpN<sub>Ea </sub>in wild-type (WT) Arabidopsis but not in <it>atpp2-a1</it>/E/142, the plant mutant that had a defect in the <it>AtPP2-A1 </it>gene, the most HrpN<sub>Ea</sub>-responsive of 30 <it>AtPP2 </it>genes. In WT rather than <it>atpp2-a1</it>/E/142, the deterrent effect of HrpN<sub>Ea </sub>treatment on the phloem-feeding activity accompanied an enhancement of <it>AtPP2-A1 </it>expression. In PP2OETAt (<it>AtPP2-A1</it>-overexpression transgenic <it>Arabidopsis thaliana</it>) plants, abundant amounts of the <it>AtPP2-A1 </it>gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpN<sub>Ea</sub>-treated WT and PP2OETAt plants, respectively, compared with control plants.</p> <p>Conclusions</p> <p>The repression in phloem-feeding activities of <it>M. persicae </it>as a result of <it>AtPP2-A1 </it>overexpression, and as a deterrent effect of HrpN<sub>Ea </sub>treatment in WT Arabidopsis rather than the <it>atpp2-a1</it>/E/142 mutant suggest that <it>AtPP2-A1 </it>plays a role in plant resistance to the insect, particularly at the phloem-feeding stage. The accompanied change of aphid population in leaf colonies suggests that the function of <it>AtPP2-A1 </it>is related to colonization of the plant.</p

    A Chromosome-Level Genome Assembly of the Mandarin Fish (Siniperca chuatsi)

    Get PDF
    The mandarin fish, Siniperca chuatsi, is an economically important perciform species with widespread aquaculture practices in China. Its special feeding habit, acceptance of only live prey fishes, contributes to its delicious meat. However, little is currently known about related genetic mechanisms. Here, we performed whole-genome sequencing and assembled a 758.78 Mb genome assembly of the mandarin fish, with the scaffold and contig N50 values reaching 2.64 Mb and 46.11 Kb, respectively. Approximately 92.8% of the scaffolds were ordered onto 24 chromosomes (Chrs) with the assistance of a previously established genetic linkage map. The chromosome-level genome contained 19,904 protein-coding genes, of which 19,059 (95.75%) genes were functionally annotated. The special feeding behavior of mandarin fish could be attributable to the interaction of a variety of sense organs (such as vision, smell, and endocrine organs). Through comparative genomics analysis, some interesting results were found. For example, olfactory receptor (OR) genes (especially the beta and delta types) underwent a significant expansion, and endocrinology/vision related npy, spexin, and opsin genes presented various functional mutations. These may contribute to the special feeding habit of the mandarin fish by strengthening the olfactory and visual systems. Meanwhile, previously identified sex-related genes and quantitative trait locis (QTLs) were localized on the Chr14 and Chr17, respectively. 155 toxin proteins were predicted from mandarin fish genome. In summary, the high-quality genome assembly of the mandarin fish provides novel insights into the feeding habit of live prey and offers a valuable genetic resource for the quality improvement of this freshwater fish

    Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface

    Get PDF
    Heterogeneous integration of compound semiconductors on a Si platform leads to advanced device applications in the field of Si photonics and high frequency electronics. However, the unavoidable bubbles formed at the bonding interface are detrimental for achieving a high yield of dissimilar semiconductor integration by the direct wafer bonding technology. In this work, lateral outgassing surface trenches (LOTs) are introduced to efficiently inhibit the bubbles. It is found that the chemical reactions in InP-Si bonding are similar to those in Si-Si bonding, and the generated gas can escape via the LOTs. The outgassing efficiency is dominated by LOTs\u27 spacing, and moreover, the relationship between bubble formation and the LOT\u27s structure is well described by a thermodynamic model. With the method explored in this work, a 2-in. bubble-free crystalline InP thin film integrated on the Si substrate with LOTs is obtained by the ion-slicing and wafer bonding technology. The quantum well active region grown on this Si-based InP film shows a superior photoemission efficiency, and it is found to be 65% as compared to its bulk counterpart

    Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice

    Get PDF
    Diet is an important factor influencing the composition and function of the gut microbiome, but the effect of antimicrobial agents present within foods is currently not understood. In this study, we investigated the effect of the food-grade cationic antimicrobial ε-polylysine on the gut microbiome structure and predicted metagenomic function in a mouse model. The relative abundances of predominant phyla and genera, as well as the overall community structure, were perturbed in response to the incorporation of dietary ε-polylysine. Unexpectedly, this modification to the gut microbiome was experienced transiently and resolved to the initial basal composition at the final sampling point. In addition, a differential non-random assembly was observed in the microbiomes characterized from male and female co-housed animals, although their perturbation trajectories in response to diet remain consistent. In conclusion, antimicrobial ε-polylysine incorporated into food systems transiently alters gut microbial communities in mice, as well as their predicted function. This indicates a dynamic but resilient microbiome that adapts to microbial-active dietary components

    The Asian arowana (<i>Scleropages formosus</i>) genome provides new insights into the evolution of an early lineage of teleosts

    Get PDF
    The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas

    The Asian Arowana (Scleropages formosus) Genome Provides New Insights into the Evolution of an Early Lineage of Teleosts

    Get PDF
    The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas
    • …
    corecore