3,959 research outputs found

    The entanglement dynamics of interacting qubits embedded in a spin environment with Dzyaloshinsky-Moriya term

    Full text link
    We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.Comment: 8 pages, 9 figure

    Quantum phase transitions in exactly solvable one-dimensional compass models

    Full text link
    We present an exact solution for a class of one-dimensional compass models which stand for interacting orbital degrees of freedom in a Mott insulator. By employing the Jordan-Wigner transformation we map these models on noninteracting fermions and discuss how spin correlations, high degeneracy of the ground state, and Z2Z_2 symmetry in the quantum compass model are visible in the fermionic language. Considering a zigzag chain of ions with singly occupied ege_g orbitals (ege_g orbital model) we demonstrate that the orbital excitations change qualitatively with increasing transverse field, and that the excitation gap closes at the quantum phase transition to a polarized state. This phase transition disappears in the quantum compass model with maximally frustrated orbital interactions which resembles the Kitaev model. Here we find that finite transverse field destabilizes the orbital-liquid ground state with macroscopic degeneracy, and leads to peculiar behavior of the specific heat and orbital susceptibility at finite temperature. We show that the entropy and the cooling rate at finite temperature exhibit quite different behavior near the critical point for these two models.Comment: 15 pages, 14 figure

    Quantum phase transitions in a generalized compass chain with three-site interactions

    Full text link
    We consider a class of one-dimensional compass models with XYZ−-YZX-type of three-site exchange interaction in an external magnetic field. We present the exact solution derived by means of Jordan-Wigner transformation, and study the excitation gap, spin correlations, and establish the phase diagram. Besides the canted antiferromagnetic and polarized phases, the three-site interactions induce two distinct chiral phases, corresponding to gapless spinless-fermion systems having two or four Fermi points. We find that the zz component of scalar chirality operator can act as an order parameter for these chiral phases. We also find that the thermodynamic quantities including the Wilson ratio can characterize the liquid phases. Finally, a nontrivial magnetoelectric effect is explored, and we show that the polarization can be manipulated by the magnetic field in the absence of electric field.Comment: 10 pages, 11 figure
    • …
    corecore