383 research outputs found

    An accretion disc with magnetic outflows triggered by a sudden mass accretion event in changing-look active galactic nucleus 1ES 1927+654

    Full text link
    1ES 1927+654 was known as a type 2 Seyfert galaxy, which exhibited drastic variability recently in ultraviolet (UV)/optical and X-ray bands. An UV/optical outburst was observed in the end of 2017, and it reached the peak luminosity ∼50\sim 50 days later. The high-cadence observations showed a rapid X-ray flux decline with complete disappearance of the power-law hard X-ray component when the soft X-ray thermal emission reached its lowest level about 150150 days after the UV/optical peak. The power law X-ray component reappeared with thermal X-ray emission brightening from its lowest flux within next ∼\sim 100~days. We assume an episodic accretion event taking place in the outer region of the disc surrounding a central black hole (BH), which is probably due to a red giant star tidally disrupted by the BH. The inner thin disc with corona is completely swept by the accretion event when the gas reaches the innermost circular stable orbit. The field threading the disrupted star is dragged inwards by the disc formed after the tidal disruption event, which accelerates outflows from the disc. The disc dimmed since a large fraction of the energy released in the disc is tapped into the outflows. The accretion rate of the episodic accretion event declines, and ultimately it turns out to be a thin disc, which is inefficient for field advection, and the outflows are switched off. A thin disc with corona reappears later after the outburst.Comment: 11 pages, accepted by MNRA

    Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator

    Full text link
    We propose a hybrid photonic-plasmonic resonant structure which consists of a metal nanoparticle (MNP) and a whispering gallery mode (WGM) microcavity. It is found that the hybrid mode enables a strong interaction between the light and matter, and the single-atom cooperativity is enhanced by more than two orders of magnitude compared to that in a bare WGM microcavity. This remarkable improvement originates from two aspects: (1) the MNP offers a highly enhanced local field in the vicinity of an emitter, and (2), surprisingly, the high-\textit{Q} property of WGMs can be maintained in the presence of the MNP. Thus the present system has great advantages over a single microcavity or a single MNP, and holds great potential in quantum optics, nonlinear optics and highly sensitive biosening.Comment: 5 pages, 4 figure

    Testing wind as an explanation for the spin problem in the continuum-fitting method

    Full text link
    The continuum-fitting method is one of the two most advanced methods of determining the black hole spin in accreting X-ray binary systems. There are, however, still some unresolved issues with the underlying disk models. One of them manifests as an apparent decrease in spin for increasing source luminosity. Here, we perform a few simple tests to establish whether outflows from the disk close to the inner radius can address this problem. We employ four different parametric models to describe the wind and compare these to the apparent decrease in spin with luminosity measured in the sources LMC~X-3 and GRS~1915+105. Wind models in which parameters do not explicitly depend on the accretion rate cannot reproduce the spin measurements. Models with mass accretion rate dependent outflows, however, have spectra that emulate the observed ones. The assumption of a wind thus effectively removes the artifact of spin decrease. This solution is not unique; the same conclusion can be obtained with a truncated inner disk model. To distinguish among valid models, high resolution X-ray data and a realistic description of the Comptonization in the wind will be needed.Comment: 14 pages, 11 figures, accepted by Ap

    Corrections to Estimated Accretion Disk Size due to Color Correction, Disk Truncation and Disk Wind

    Full text link
    We consider three corrections to the disk sizes estimated at a given frequency using accretion models. They are due to a color correction, a disk truncation at an inner radius larger than the innermost stable circular orbit, and disk winds, which we apply to the standard disk model. We apply our results to the estimates of the disk sizes based on microlensing. We find these three effects combined can explain the long-standing problem of the disk sizes from microlensing being larger than those estimated using the standard disk model (i.e., that without accounting for the above effects). In particular, an increase of the color correction with the increasing temperature can lead to a strong increase of the half-light radius even if this correction is close to unity at the temperature corresponding to an observed frequency. Our proposed formalism for calculating the half-light radius also resolves the long-standing issue of discrepancies between the disk size estimates based on the accretion rate and on the observed flux.Comment: ApJL, in pres
    • …
    corecore