10 research outputs found

    Amplified EPOR/JAK2 Genes Define a Unique Subtype of Acute Erythroid Leukemia

    Get PDF
    ゲノム解析から急性赤白血病の変異プロファイルと治療標的を解明 --特定の遺伝子変異群の組み合わせと、特徴となる遺伝子の増幅が鍵--. 京都大学プレスリリース. 2022-08-05.Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome/exome and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains/amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains/amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL

    Delayed Onset of Isolated Unilateral Oculomotor Nerve Palsy Caused by Post-Traumatic Pituitary Apoplexy: A Case Report

    No full text
    Post-traumatic pituitary apoplexy is uncommon, most of which present with a sudden onset of severe headache and visual impairments associated with a dumbbell-shaped pituitary tumor. We experienced an unusual case of post-traumatic pituitary apoplexy with atypical clinical features. A 66-year-old man presented with mild cerebral contusion and an incidentally diagnosed intrasellar tumor after a fall accident with no loss of consciousness. The patients denied any symptoms before the accident. After 4 days, the left oculomotor nerve palsy developed and deteriorated associated with no severe headache. Repeated neuroimages suggested that pituitary apoplexy had occurred at admission and showed that the tumor compressed the left cavernous sinus. The patient underwent endonasal transsphenoidal surgery at 6 days after head injury, and the mass reduction improved the oculomotor nerve palsy completely within the following 14 days. The pathologic diagnosis was nonfunctioning pituitary adenoma with hemorrhage and necrosis

    A Combination of Amide Proton Transfer, Tumor Blood Flow, and Apparent Diffusion Coefficient Histogram Analysis Is Useful for Differentiating Malignant from Benign Intracranial Tumors in Young Patients: A Preliminary Study

    No full text
    Purpose: To evaluate the amide proton transfer (APT), tumor blood flow (TBF), and apparent diffusion coefficient (ADC) combined diagnostic value for differentiating intracranial malignant tumors (MTs) from benign tumors (BTs) in young patients, as defined by the 2021 World Health Organization classification of central nervous system tumors. Methods: Fifteen patients with intracranial MTs and 10 patients with BTs aged 0–30 years underwent MRI with APT, pseudocontinuous arterial spin labeling (pCASL), and diffusion-weighted imaging. All tumors were evaluated through the use of histogram analysis and the Mann–Whitney U test to compare 10 parameters for each sequence between the groups. The diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. Results: The APT maximum, mean, 10th, 25th, 50th, 75th, and 90th percentiles were significantly higher in MTs than in BTs; the TBF minimum (min) was significantly lower in MTs than in BTs; TBF kurtosis was significantly higher in MTs than in BTs; the ADC min, 10th, and 25th percentiles were significantly lower in MTs than in BTs (all p < 0.05). The APT 50th percentile (0.900), TBF min (0.813), and ADC min (0.900) had the highest area under the curve (AUC) values of the parameters in each sequence. The AUC for the combination of these three parameters was 0.933. Conclusions: The combination of APT, TBF, and ADC evaluated through histogram analysis may be useful for differentiating intracranial MTs from BTs in young patients

    Annealed ZnO/Al2O3 Core-Shell Nanowire as a Platform to Capture RNA in Blood Plasma

    No full text
    RNA analytical platforms gained extensive attention recently for RNA-based molecular analysis. However, the major challenge for analyzing RNAs is their low concentration in blood plasma samples, hindering the use of RNAs for diagnostics. Platforms that can enrich RNAs are essential to enhance molecular detection. Here, we developed the annealed ZnO/Al2O3 core-shell nanowire device as a platform to capture RNAs. We showed that the annealed ZnO/Al2O3 core-shell nanowire could capture RNAs with high efficiency compared to that of other circulating nucleic acids, including genomic DNA (gDNA) and cell-free DNA (cfDNA). Moreover, the nanowire was considered to be biocompatible with blood plasma samples due to the crystalline structure of the Al2O3 shell which serves as a protective layer to prevent nanowire degradation. Our developed device has the potential to be a platform for RNA-based extraction and detection

    Driver Genetic Mutations in Spinal Cord Gliomas Direct the Degree of Functional Impairment in Tumor-Associated Spinal Cord Injury

    No full text
    Genetic analysis in glioma has been developed recently. Spinal cord glioma is less common than intracranial glioma. Thus, the clinical significance of genetic mutations in spinal cord gliomas remains unclear. Furthermore, because the spinal cord is an important communication channel between the brain and the rest of the body, increased attention should be paid to its functional prognosis. In this study, we investigated the functional prognosis and driver genetic mutations in eight patients with spinal cord gliomas (World Health Organization grade I, three cases; grade II, two cases; grade III/IV, three cases). IDH mutations were detected in all grade II cases and H3F3A mutations were detected in all grade III/IV cases. The functional status of grade I and II gliomas remained unchanged or improved 1 year after surgery, whereas grade III/IV gliomas remained unchanged or deteriorated. Spinal glioma progenitor cells with H3F3A mutations were associated with accelerated tumor-associated spinal cord injury, which led to functional impairment. Conversely, the presence of IDH mutations, which are rarely reported in spinal gliomas, indicated a relatively favorable functional prognosis

    Erythrocyte-Rich Thrombus Is Associated with Reduced Number of Maneuvers and Procedure Time in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy

    No full text
    Background: Only few studies have investigated the relationship between the histopathology of retrieved thrombi and clinical outcomes. This study aimed to evaluate thrombus composition and its association with clinical, laboratory, and neurointerventional findings in patients treated by mechanical thrombectomy due to acute large vessel occlusion. Methods: At our institution, 79 patients were treated by mechanical thrombectomy using a stent retriever and/or aspiration catheter between August 2015 and August 2016. The retrieved thrombi were quantitatively analyzed to quantify red blood cells, white blood cells, and fibrin by area. We divided the patients into two groups – a fibrin-rich group and an erythrocyte-rich group – based on the predominant composition in the thrombus. The groups were compared for imaging, clinical, and neurointerventional data. Results: The retrieved thrombi from 43 patients with acute stroke from internal carotid artery, middle cerebral artery, or basilar artery occlusion were histologically analyzed. Erythrocyte-rich thrombi were present in 18 cases, while fibrin-rich thrombi were present in 25 cases. A cardioembolic etiology was significantly more prevalent among the patients with fibrin-rich thrombi than among those with erythrocyte-rich thrombi. Attenuation of thrombus density as shown on computed tomography images was greater in patients with erythrocyte-rich thrombi than in those with fibrin-rich thrombi. All other clinical and laboratory characteristics remained the same. Patients with erythrocyte-rich thrombi had a smaller number of recanalization maneuvers, shorter procedure times, a shorter time interval between arrival and recanalization, and a higher percentage of stent retrievers in the final recanalization procedure. The occluded vessels did not differ significantly. Conclusions: In this study, erythrocyte-rich thrombus was associated with noncardioembolic etiology, higher thrombus density, and reduced procedure time

    Urinary MicroRNA-Based Diagnostic Model for Central Nervous System Tumors Using Nanowire Scaffolds

    No full text
    There are no accurate mass screening methods for early detection of central nervous system (CNS) tumors. Recently, liquid biopsy has received a lot of attention for less-invasive cancer screening. Unlike other cancers, CNS tumors require efforts to find biomarkers due to the blood–brain barrier, which restricts molecular exchange between the parenchyma and blood. Additionally, because a satisfactory way to collect urinary biomarkers is lacking, urine-based liquid biopsy has not been fully investigated despite the fact that it has some advantages compared to blood or cerebrospinal fluid-based biopsy. Here, we have developed a mass-producible and sterilizable nanowire-based device that can extract urinary microRNAs efficiently. Urinary microRNAs from patients with CNS tumors (n = 119) and noncancer individuals (n = 100) were analyzed using a microarray to yield comprehensive microRNA expression profiles. To clarify the origin of urinary microRNAs of patients with CNS tumors, glioblastoma organoids were generated. Glioblastoma organoid-derived differentially expressed microRNAs (DEMs) included 73.4% of the DEMs in urine of patients with parental tumors but included only 3.9% of those in urine of noncancer individuals, which suggested that many CNS tumor-derived microRNAs could be identified in urine directly. We constructed the diagnostic model based on the expression of the selected microRNAs and found that it was able to differentiate patients and noncancer individuals at a sensitivity and specificity of 100 and 97%, respectively, in an independent dataset. Our findings demonstrate that urinary microRNAs extracted with the nanowire device offer a well-fitted strategy for mass screening of CNS tumors

    TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation

    No full text
    Abstract Oncogene-induced DNA replication stress (RS) and consequent pathogenic R-loop formation are known to impede S phase progression. Nonetheless, cancer cells continuously proliferate under such high-stressed conditions through incompletely understood mechanisms. Here, we report taurine upregulated gene 1 (TUG1) long noncoding RNA (lncRNA), which is highly expressed in many types of cancers, as an important regulator of intrinsic R-loop in cancer cells. Under RS conditions, TUG1 is rapidly upregulated via activation of the ATR-CHK1 signaling pathway, interacts with RPA and DHX9, and engages in resolving R-loops at certain loci, particularly at the CA repeat microsatellite loci. Depletion of TUG1 leads to overabundant R-loops and enhanced RS, leading to substantial inhibition of tumor growth. Our data reveal a role of TUG1 as molecule important for resolving R-loop accumulation in cancer cells and suggest targeting TUG1 as a potent therapeutic approach for cancer treatment
    corecore