73 research outputs found

    Outcomes of Patients with Pulmonary Atresia with Intact Ventricular Septum Reaching Adulthood

    Get PDF
    Background: There is limited information on outcomes of adult patients with pulmonary atresia with intact ventricular septum (PA-IVS) due to the low incidence of disease and the large variation of surgical histories. Methods: Among 58 patients with repaired PA-IVS, a total of 32 patients aged ≥16 years and who were followed at our institution between January 2003 and December 2018 were reviewed. Surgical history, clinical outcomes, and laboratory, echocardiographic and electrocardiographic data were obtained by chart review. Results: Follow-up was from the age of 16 years and the median age at the latest follow-up was 23.7 years. Twenty-four patients had undergone biventricular repair (BVR), 3 had undergone one-and-a half ventricular repair (1.5VR), and 5 had undergone univentricular repair. Over a median follow-up period of 7.7 years (interquartile range: 4.1–11.0 years), 1 BVR patient died suddenly and 7 patients had heart failure. Arrhythmias were present in 5 patients. Ten patients underwent surgical re-interventions, including 4 BVR take-downs with conversion to 1.5VR and 3 Fontan conversions. Overall survival, heart failure-free, arrhythmia-free, and surgical re-intervention-free rates at 5 years and 10 years from the age of 16 years were 96.2% (95% confidence interval [CI], 77.2–99.4) and 96.2% (95% CI, 77.2– 99.4), 81.4% (95% CI, 62.1–92.1) and 74.6% (95%CI, 52.3–88.7), 88.7% (95% CI, 70.1–96.3) and 75.9% (95% CI, 51.7–90.2), and 80.7% (95% CI, 60.8–91.8) and 70.8% (95% CI, 49.7–85.7), respectively. Conclusion: Adults with PA-IVS have preserved long-term survival regardless of the early operative strategy, while they are at risk for heart failure, arrhythmia, and surgical re-intervention. Thus, detailed and continued follow-up is mandatory for all PA-IVS patients from childhood to adulthood

    Neutron capture cross section measurements of 120

    Full text link
    Preliminary neutron capture cross section of 120Sn, 122Sn and 124Sn were obtained in the energy range from 20 meV to 4 keV with the array of germanium detectors in ANNRI at MLF,J-PARC. The results of 120Sn, 122Sn and 124Sn were obtained by normalizing the relative cross sections to the data in JENDL-4.0 at the largest 426.7-, 107.0- and 62.05-eV resonances, respectively. The 67.32- and 150-eV resonances for 120Sn and the 579- and 950-eV resonances for 124Sn which are listed in JENDL-4.0 and/or ENDF/B VII.1 were not observed

    Susceptibility of muridae cell lines to ecotropic murine leukemia virus and the cationic amino acid transporter 1 viral receptor sequences: implications for evolution of the viral receptor

    Get PDF
    Ecotropic murine leukemia viruses (Eco-MLVs) infect mouse and rat, but not other mammalian cells, and gain access for infection through binding the cationic amino acid transporter 1 (CAT1). Glycosylation of the rat and hamster CAT1s inhibits Eco-MLV infection, and treatment of rat and hamster cells with a glycosylation inhibitor, tunicamycin, enhances Eco-MLV infection. Although the mouse CAT1 is also glycosylated, it does not inhibit Eco-MLV infection. Comparison of amino acid sequences between the rat and mouse CAT1s shows amino acid insertions in the rat protein near the Eco-MLV-binding motif. In addition to the insertion present in the rat CAT1, the hamster CAT1 has additional amino acid insertions. In contrast, tunicamycin treatment of mink and human cells does not elevate the infection, because their CAT1s do not have the Eco-MLV-binding motif. To define the evolutionary pathway of the Eco-MLV receptor, we analyzed CAT1 sequences and susceptibility to Eco-MLV infection of other several murinae animals, including the southern vole (Microtus rossiaemeridionalis), large Japanese field mouse (Apodemus speciosus), and Eurasian harvest mouse ( Micromys minutus). Eco-MLV infection was enhanced by tunicamycin in these cells, and their CAT1 sequences have the insertions like the hamster CAT1. Phylogenetic analysis of mammalian CAT1s suggested that the ancestral CAT1 does not have the Eco-MLV-binding motif, like the human CAT1, and the mouse CAT1 is thought to be generated by the amino acid deletions in the third extracellular loop of CAT1

    Analytical Method for At-211 using an α-Scintillation-Camera System and Thin-Layer Chromatography

    No full text
    At-211 is artificially produced for medical purposes. To prevent severe loss of shortlived At-211, a rapid method analyzing both the radioactivity and all chemical forms was required for related fundamental researches. We propose a new method by means of an α-scintillation-camera system comprising of thin-layer chromatography and a high-sensitive CCD camera. The performance of the system was experimentally verified: low-radioactivity At-211 of 56 - 672 Bq was measured in a short-time of 1000 sec and all chemical forms of At-211 were evaluated. The results reveal that the method enables us to analyze two features of At-211 with significantly short-time

    Integral experiments of technetium-99 using fast-neutron source reactor ‘YAYOI’

    No full text
    The present study performed integral experiments of 99Tc by an activation method using a fastneutron source reactor ‘YAYOI’ of the University of Tokyo to validate evaluated nuclear data 10 libraries: JENDL-4.0, ENDF/B-VII and VIII. Technetium-99 samples were irradiated with reactor neutrons using a pneumatic system, and repeated 74 times to accumulate statistics. Reaction rates of 99Tc were obtained by measuring decay gamma rays emitted from 100Tc. The fast neutron flux spectrum at the YAYOI was checked with flux monitors and MCNP calculations.The experimental reaction rate of 99Tc was compared with the reaction rates given using both 15 the fast-neutron flux spectrum and evaluated nuclear data libraries. The present integral experiments supported the evaluated nuclear data library JENDL-4.

    Integral experiment of 129I(n, γ) reaction using fast neutron source in the ‘YAYOI’ reactor

    No full text
    The present study analyzes an integral experiment performed in the fast-neutron reactor ‘YAYOI’ of the University of Tokyo to validate the 129I (n,γ) cross-section. An iodine-129 sample and 15 neutron flux monitors were irradiated with fast neutrons in the Glory hole of the reactor. Capture reaction rates of 129I were obtained by measurement of gamma rays emitted through the decay of 130I, and the 15 neutron flux monitors helped validate the computed fast-neutron flux spectrum in the Glory hole. By comparing the experimental and calculated reaction rates for 129I, the present study reveals that the 129I (n,γ) cross-section of JENDL-4.0 should be reduced by 18% in the 10 keV–3 MeV energy range and supports the data by Noguere et al. below 100 keV

    Study for s-process using neutron beam provided from ANNRI of J-PARC

    No full text
    Most isotopes heavier than iron are synthesized by the slow neutron capture reaction process (s-process) in stars. Isomers in stable isotopes have sometimes an important role as a branching point in nucleosynthesis flow in the s-process. An isomer with a half-life of 14.1 y in 113Cd is a branching point from which a nucleosynthesis flow reaches to a rare isotope 115Sn. The astrophysical origin of 115Sn has remained still an open question. The s-process abundance of 115Sn depends on the ratio of the 112Cd(n, γ) 113Cdm reaction cross section to the 112Cd(n, γ) 113Cdgs reaction cross section. However, the isomer production ratio following the neutron capture reaction has not been measured in the energy region higher than the thermal energy. An intense neutron beam experimental system, ANNRI, in J-PARC has a high purity germanium (HPGe) detector system consisting of two cluster detectors. We have measured γ-rays decaying to the ground state and the isomer using the HPGe detectors in conjunction with a time-offlight method at ANNRI

    A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Get PDF
    Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS), from Methanothermobacter thermautotrophicus,has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS), phosphatidylglycerol synthase (PGS) and phosphatidylinositol synthase (PIS) derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF) tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea roughly corresponded to the experimentally identified distribution of archaetidylglycerol or archaetidylinositol. The molecular phylogenetic tree patterns and the correspondence to the membrane compositions suggest that the two clusters in this group correspond to archaetidylglycerol synthases and archaetidylinositol synthases. No archaeal hypothetical protein with sequence similarity to known phosphatidylcholine synthases was detected in this study
    corecore