81 research outputs found

    Suppression of Propionibacterium acnes

    Get PDF
    Purpose. Macrophages serve as sweepers of microbes and inflammation-derived wastes and regulators of inflammation. Some traditional Japanese medicines are reported to have adjuvant effects by modifying macrophages. Our aim was to characterize the actions of jumihaidokuto (JHT) for treatment of skin inflammations including acne vulgaris, in which Propionibacterium acnes has pathogenic roles. Methods. Dermatitis was induced in rat ears by intradermal injection of P. acnes. JHT or prednisolone (PDN) was given orally, and ear thickness and histology were evaluated. The effects of constituents and metabolites of JHT on monocytes were tested by cell-based assays using the human monocytic THP-1 cell. Results. JHT and PDN suppressed the ear thickness induced by P. acnes injection. Histological examinations revealed that JHT, but not PDN, promoted macrophage accumulation at 24 h after the injection. PDN suppressed the macrophage chemokine MCP-1 in the inflamed ears, while JHT did not affect it. The JHT constituents liquiritigenin and isoliquiritin increased expression of CD86 (type-1 macrophage marker) and CD192 (MCP-1 receptor) and enhanced phagocytosis by THP-1. Conclusions. JHT suppressed dermatitis, probably by enhancing type-1 macrophage functions, with an action different from PDN. JHT may be a beneficial drug in treatment of skin inflammation induced by P. acnes

    Development of low-volume, high-intensity, aerobic-type interval training for elderly Japanese men: a feasibility study

    Get PDF
    BackgroundThe purposes of this study were to identify 1) the feasibility of a novel exercise protocol (elderly Japanese male version of high-intensity interval aerobic training: EJ-HIAT) and 2) its preliminary data (%V̇O2peak, rating of perceived exertion) in comparison with traditional moderate-intensity continuous aerobic training (MICT).ResultsTwenty-one sedentary elderly men, aged 60–69 years, performed two exercise protocols: EJ-HIAT, consisting of 3 sets of 2−3-min cycling at 75−85%V̇O2peak with 1−2-min active rests at 50%V̇O2peak between sets, and MICT, consisting of 40-min cycling at 65%V̇O2peak. The completion rate, defined as the rate of participants who 1) did not demand withdrawal, 2) were not interrupted by the tester, and 3) did not change the workload during either exercise protocol, of EJ-HIAT was similar to that of MICT (EJ-HIAT: 100%, MICT: 95.2%). Maximal perceived exertion ratings assessed by Borg scale were also similar between EJ-HIAT and MICT. However, objectively measured maximal intensity assessed by %V̇O2peak was higher for EJ-HIAT than for MICT (EJ-HIAT: 86.0 ± 5.6%, MICT: 67.1 ± 6.4%).ConclusionThese results suggested that EJ-HIAT has good feasibility and perceived exertion similar to MICT despite having higher objectively measured intensity than MICT. An intervention aimed as identifying the effects of EJ-HIAT on exercise tolerance should be performed in the future

    Experimental model for the irradiation-mediated abscopal effect and factors influencing this effect

    Get PDF
    Radiotherapy (RT) is the primary treatment for cancer. Ionizing radiation from RT induces tumor damage at the irradiated site, and, although clinically infrequent, may cause regression of tumors distant from the irradiated site-a phenomenon known as the abscopal effect. Recently, the abscopal effect has been related to prolongation of overall survival time in cancer patients, though the factors that influence the abscopal effect are not well understood. The aim of this study is to clarify the factors influencing on abscopal effect. Here, we established a mouse model in which we induced the abscopal effect. We injected MC38 (mouse colon adenocarcinoma) cells subcutaneously into C57BL/6 mice at two sites. Only one tumor was irradiated and the sizes of both tumors were measured over time. The non-irradiated-site tumor showed regression, demonstrating the abscopal effect. This effect was enhanced by an increase in the irradiated-tumor volume and by administration of anti-PD1 antibody. When the abscopal effect was induced by a combination of RT and anti-PD1 antibody, it was also influenced by radiation dose and irradiated-tumor volume. These phenomena were also verified in other cell line, B16F10 cells (mouse melanoma cells). These findings provide further evidence of the mechanism for, and factors that influence, the abscopal effect in RT

    Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is one of the most intractable cancers, so the development of novel therapeutics has been required to improve patient outcomes. Curcumin, a polyphenol from Curcuma longa, exhibits various health benefits including antitumor effects, but its clinical utility is limited because of low bioavailability. Theracurmin® (THC) is a highly bioavailable curcumin dispersed with colloidal submicron particles. Methods: We examined antitumor effects of THC on ESCC cells by cell viability assay, colony and spheroid formation assay, and xenograft models. To reveal its mechanisms, we investigated the levels of reactive oxygen species (ROS) and performed microarray gene expression analysis. According to those analyses, we focused on NQO1, which involved in the removal of ROS, and examined the effects of NQO1-knockdown or overexpression on THC treatment. Moreover, the therapeutic effect of THC and NQO1 inhibitor on ESCC patient-derived xenografts (PDX) was investigated. Results: THC caused cytotoxicity in ESCC cells, and suppressed the growth of xenografted tumors more efficiently than curcumin. THC increased ROS levels and activated the NRF2–NMRAL2P–NQO1 expressions. Inhibition of NQO1 in ESCC cells by shRNA or NQO1 inhibitor resulted in an increased sensitivity of cells to THC, whereas overexpression of NQO1 antagonized it. Notably, NQO1 inhibitor significantly enhanced the antitumor effects of THC in ESCC PDX tumors. Conclusions: These findings suggest the potential usefulness of THC and its combination with NQO1 inhibitor as a therapeutic option for ESCC

    HER2 G776S mutation promotes oncogenic potential in colorectal cancer cells when accompanied by loss of APC function

    Get PDF
    Clinical cancer genome sequencing detects oncogenic variants that are potential targets for cancer treatment, but it also detects variants of unknown significance. These variants may interact with each other to influence tumor pathophysiology, however, such interactions have not been fully elucidated. Additionally, the effect of target therapy for those variants also unclarified. In this study, we investigated the biological functions of a HER2 mutation (G776S mutation) of unknown pathological significance, which was detected together with APC mutation by cancer genome sequencing of samples from a colorectal cancer (CRC) patient. Transfection of the HER2 G776S mutation alone slightly increased the kinase activity and phosphorylation of HER2 protein, but did not activate HER2 downstream signaling or alter the cell phenotype. On the other hand, the HER2 G776S mutation was shown to have strong oncogenic potential when loss of APC function was accompanied. We revealed that loss of APC function increased Wnt pathway activity but also increased RAS-GTP, which increased ERK phosphorylation triggered by HER2 G776S transfection. In addition, afatinib, a pan-HER tyrosine kinase inhibitor, suppressed tumor growth in xenografts derived from HER2 G776S-transfected CRC cells. These findings suggest that this HER2 mutation in CRC may be a potential therapeutic target

    A New Serum Biomarker Set to Detect Mild Cognitive Impairment and Alzheimer’s Disease by Peptidome Technology

    Get PDF
    Background: Because dementia is an emerging problem in the world, biochemical markers of cerebrospinal fluid (CSF) and radio-isotopic analyses are helpful for diagnosing Alzheimer’s disease (AD). Although blood sample is more feasible and plausible than CSF or radiological biomarkers for screening potential AD, measurements of serum amyloid- β (Aβ), plasma tau, and serum antibodies for Aβ1 - 42 are not yet well established. Objective: We aimed to identify a new serum biomarker to detect mild cognitive impairment (MCI) and AD in comparison to cognitively healthy control by a new peptidome technology. Methods: With only 1.5μl of serum, we examined a new target plate “BLOTCHIP®” plus a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) to discriminate control (n = 100), MCI (n = 60), and AD (n = 99). In some subjects, cognitive Mini-Mental State Examination (MMSE) were compared to positron emission tomography (PET) with Pittsburgh compound B (PiB) and the serum probability of dementia (SPD). The mother proteins of candidate serum peptides were examined in autopsied AD brains. Results: Apart from Aβ or tau, the present study discovered a new diagnostic 4-peptides-set biomarker for discriminating control, MCI, and AD with 87% of sensitivity and 65% of specificity between control and AD (***p  Conclusion: The present serum biomarker set provides a new, rapid, non-invasive, highly quantitative and low-cost clinical application for dementia screening, and also suggests an alternative pathomechanism of AD for neuroinflammation and neurovascular unit damage

    Ultrafast Frequency-Shift Dynamics at Temporal Boundary Induced by Structural-Dispersion Switching of Waveguides

    Get PDF
    We experimentally demonstrate the observation of a frequency-shift dynamics at a temporal boundary in the terahertz (THz) region relying on a scheme that controls the structural dispersion of a metal-semiconductor waveguide. Ultrafast structural-dispersion switching is achieved within a subpicosecond timescale by illuminating a waveguide surface with an optical pump pulse during the propagation of a THz pulse in the waveguide. Owing to the relatively high conversion efficiency, up to 23%, under the condition that the frequency shift is sufficiently larger than the bandwidth of the incident pulse, the rapid variation of the THz frequency around the temporal boundary is directly observed in the time domain

    Computational performance of Free Mesh Method applied to continuum mechanics problems

    Get PDF
    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore