23 research outputs found

    Hollywood and Thai Science Fiction Films: Differences, Similarities, and Narrative Perspectives

    Get PDF
    Hollywood science fiction films are commercially and critically successful in many countries, including Thailand. Yet Thai science fiction films do not achieve the same result in terms of box office sales, even for Thai spectators. This research explores the similarities and differences of Hollywood and Thai science fiction films in both narrative and formal terms. The researcher examines Jurassic Park, The Matrix, Kawao tee Bangpleng, and Cloning: Khon Copy Khon to compare themes, plots, characters, setting, costumes, cinematography, and editing in order to consider techniques and approaches to develop Thai science fiction films for international audiences

    Remediation of chromium contaminated soils with colloidal silica

    Get PDF
    The low-viscosity stabilizer, colloidal silica, is extensively used as a grouting material in the construction of grout curtains. It has low viscosity and is non-toxic, which is suitable for injection to stabilize fine-grained soils. It is also applied as a stabilizer in the in-situ treatment of hazardous waste. Once the colloidal silica solution is injected into contaminated soil, it moves through the pores inside the soil matrix, initiating the stabilization process. The viscosity of the colloidal silica mixture increases while it moves until solidifications. This process is called gelation and results in the creation of a gel barrier around contaminated soil particles, causing a substantial reduction of fluid flow in the soil, this will minimize the movement of water and hence movement of contaminants through the gel mass. In this research, the stabilization process of chromium contaminated soils using colloidal silica were investigated. The transport of colloidal silica during injection was simulated at the microscopic level to further understand the gelation process. Diffusion of chromium through colloidal silica gel was modeled to evaluate the effectiveness of the technology. A new optical method to estimate the diffusion coefficient of chromium in gel was purposed. The diffusion coefficient obtained using the above optical method was used to evaluate the long term effectiveness of colloidal silica grouting technology. The movement of colloidal silica during the injection was modeled using the change in gel viscosity with time. The simulation showed that during the grouting process, solidification starts at the soil surface and expands to fill the void space within 1.2 hours. The different soil geometries resulted in the different velocity contours and different colloidal silica solidification patterns. The greater the ellipsoid axial ratio of soil resulted in faster solidification. The measured diffusion coefficients of chromium in the colloidal silica gel, NYACOL DP5110® from Eka Chemical Inc., ranges from 1.76 to 8.48 x 10-10 m2/sec depending mainly on the concentration of silica in the gel and initial concentration of chromium. Higher silica concentrations yielded greater diffusion coefficients due to the obstruction to the free movement of chromium. The adsorption isotherm of chromate to colloidal silica gel was found to be linear at pH 7; partition coefficient was calculated to be 0.549 liter/gm. Mass balance calculations were performed to evaluate the accuracy of the proposed method and the error was less than 6.5%. Therefore, the optical method using digital imaging is an effective and reliable technique for measuring the diffusion coefficient of metal contaminated colloidal silica gel. Using the measured diffusion and partition coefficients, a simulation was performed for worse case scenario, where chromium is continuously dissolved from soil into the water interface between soil and gel, and moves to groundwater without obstruction from soil particles. The thickness of the gel barrier used in this simulation was 5 cm (Heisher, 1997). The solubility of chromium in water was 109 mg/liter (Rock et al, 2001). The results showed that it would take approximately eight days before the groundwater would exceed the USEPA standard for chromium (0.1 mg/liter). Based on these initial test results, the use of NYACOL DP5110® to treat chromium contaminated soil appears to be ineffective due to high diffusion. The diffusion of contaminant in gel will be a major concern when applying this technology. Further research of more realistic simulation of diffusion and refined gel formulation with capacity to convert the chromium to immobile form is recommended

    Evaluation of environmental carrying capacity and application of the sustainability target method

    Get PDF
    The environmental carrying capacity (CC) is defined as the capacity of the earth to absorb or tolerate potentially stressful burdens imparted at various scales and locations, that is, to accommodate the ecological stresses without showing permanent damage. The CC can be used as a reference dataset for Life Cycle Assessment (LCA) purposes and as a baseline for other environmental studies. In this research, a set of impact-oriented U.S. CC is developed for both input- and output-related impacts. CC for eight common impact categories is evaluated: resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical ozone formation, human toxicity, and eco-toxicity. Numerous sources of information and various environmental models are used to estimate the CC at the appropriate scales. The CC for output-related impacts is mostly based on the threshold-oriented technique using threshold concentrations in environments. A CC is basically determined from the emission that causes the environmental conditions not exceeding the threshold levels. The CC estimates are applied as the baseline reference for the Sustainability Target Method (STM), a Life Cycle Impact Assessment (LCIA) method, in three LCA case studies. The STM is a single-score LCIA method which offers an absolute metric for environmental performance evaluation. The STM not only compares alternatives in terms of environmental performance, but also evaluates the performance by identifying the significance of impact in relation to the earth\u27s carrying capacity. The case studies presented are the LCA of electrical energy generation using various fossil fuels, the production of various basic materials, and the production of a coffee maker. The results are compared with those of other LCIA methods: Eco-Indicator 95, Eco-Indicator 99, BPS, and EDIP. The advantages of using the STM in conjunction with the CC estimates are that: it provides an absolute metric related to environmental sustainability; it allows economic consideration; it eliminates the subjective weighting procedure inherent in other LCIA methods; it deals with the temporal and spatial variations in life cycle stages; and it is flexible and not limited to the selection of impacts

    Water Quality Simulation and Dissolved Oxygen Change Scenarios in Lam Takhong River in Thailand

    Get PDF
    Dissolved oxygen (DO) in Lam Takhong River gradually reaches zero value during the dry season on several occasions in the past decade causing the unsuitable quality for use as the raw water for Nakhon Ratchasima Town. Discharges of point sources and diffuse sources containing pollutants with organics and nutrients are the major cause of water quality deterioration in the river. To find the sources of impact on the water quality in the river, a one- dimensional steady-flow systems river water quality model, QUAL2Kw, was constructed and simulated. The model was calibrated and validated using the water quality data from 2008 to 2017 for the Lam Takhong River by seven monitoring stations. The modelling was applied to simulate various water quality parameters during the critical period to compare to the designated surface water quality criteria third class in Thailand (minimum dissolved oxygen at or above 4 mg/L; maximum biochemical oxygen demand (BOD), nitrate-nitrogen, and ammonia-nitrogen at or below 2.0, 5.0 and 0.5 mg/L, respectively). The study reach of the river flows 122 km from Lam Takhong Dam to the Mun River at Chaloem Phra Kiat district through the urban central area. Several segments of the river have been alarmed for many constituents with the dissolved oxygen impairment is the focus of the study. The scenarios of loads and upstream dissolved oxygen modification were conducted to assess the change of dissolved oxygen concentration. The result of the QUAL2Kw model showed that the decomposition of organic matter and a poor reaeration were the primary cause of the impairment. The local oxygenation causes fluctuations in dissolved oxygen levels along the river and the dissolved oxygen concentration decreases downstream of the river with some values fell the meet the fourth class of surface water quality criteria in Thailand (DO above 2 mg/L and BOD5<4 mg/L). The QUAL2Kw model is suitable for simulating the current and future river water quality and help water resources managers to issue the appropriate policy options for the Lam Takhong River

    Role of Natural Wetlands in Arsenic Removal from Arsenic-Contaminated Runoff

    Get PDF
    This research aims to identify the role of natural wetlands in arsenic (As) removal. Phu Lek wetland in Loei Province, Thailand, was selected as the study area. Monthly samples of water (144), plant (360), and sediment (144) were collected from the wetland for 24 months. As concentration in the surface water at the wetland inlet was 0.85±0.26 mg L-1, and 0.02±0.01 mg L-1 at the wetland outlet. It was observed that the As level in water decreased significantly along its flow path, with an As removal efficiency of 98 %. As concentration in the sediment was 89.53-356.22 mg kg-1 at the inlet of wetland, but decreased gradually downstream of the water flow. Three dominant emergent plant species were observed in this wetland. As accumulation(0.02-2.37 mg kg-1) was noted in all the parts of the three plant species. As content was the highest in the rootlet(0.00-1.27 mg kg-1) compared to that in foliage (0.00-0.84 mg kg-1), leaf stalk (0.00-1.86 mg kg-1), and rhizome (0.00-2.64 mg kg-1). The level of As in the different vegetation species was in the order Diplazium esculentum > Colocasia esculenta > Lasia spinose. Further, As entrapment in the different plant plants followed the order rootlet > rhizome > foliage > leaf stalk. All the three plant species showed high bioconcentration factors, with values of 0.03-1.28, 0.02-0.93, 0.00-0.84, and 0.00-0.38 at the rootlet, rhizome, foliage, and leaf stalk, respectively, but had low translocation factors (foliage/rootlet: 0.02-0.90 and leaf stalk/rootlet: 0.00-0.44). In summary, As present in the surface water could be effectively removed by the wetland system

    Epidemiological study of antimicrobial-resistant bacteria in healthy free-ranging bantengs (Bos javanicus) and domestic cattle

    Get PDF
    Background and Aim: Antimicrobial-resistant microorganisms (ARMs) have been increasing among wild animals. Interactions occurring at the interface between wildlife, humans, and livestock can lead to the transmission of ARMs. Thus, the prevalence of ARMs in wild and domestic animals should be determined to address and prevent this issue. This study aimed to determine the resistance patterns of cefotaxime (CTX)-resistant Escherichia coli and identify the presence of extended-spectrum beta-lactamase (ESBL) genes in ESBL-producing E. coli among a population of wild banteng (Bos javanicus) and domestic cattle kept on farms located close to the Lam Pao non-hunting area, Kalasin province, Thailand. Materials and Methods: Forty-five fecal samples were taken from wild bantengs inhabiting the Lam Pao non-hunting area in Thailand, alongside 15 samples from domestic cattle. Bacterial culture, triple sugar iron, and motile indole lysine tests were conducted to identify E. coli. A polymerase chain reaction (PCR) was conducted for specific confirmation. MacConkey agar supplemented with 2 μg/mL of CTX was used to identify CTX-resistant E. coli, which would be used to identify ESBL production based on a double-disk synergy test. Extended-spectrum beta-lactamase-producing samples were subjected to disk diffusion tests to determine resistant patterns, and the sizes of PCR bands and DNA sequencing were used to differentiate ESBL gene types. Results: All samples tested positive for E. coli. Forty-five isolates from 15 banteng samples and three isolates from one domestic cattle sample displayed CTX-resistant and ESBL-producing traits. The banteng and domestic cattle populations exhibited nine and three distinct resistant patterns, respectively. The PCR results indicated that the banteng isolates harbored the following genes: Cefotaxime-M1 (n = 38), CTX-M9 (n = 5), and the SHV group (n = 2). All three isolates from the domestic cattle sample contained the CTX-M1 gene. Classification of ESBL genes based on the DNA sequences of the banteng isolates showed the characteristics of CTX-M15 (n = 20), CTX-M55 (n = 6), CTX-M14 (n = 5), and CTX-M79 (n = 1). The three domestic cattle isolates exhibited the characteristics of CTX-M15, CTX-M55, and CTX-M79. Conclusion: Despite no previous antibiotic applications, approximately one-third of the banteng samples displayed CTX resistance, indicating ARM contamination within the ecosystem. The similarity in ESBL genes between the banteng and domestic cattle populations suggests potential gene transmissions between these animal groups. However, the initial source of ARMs remains unclear, as the banteng population exhibited more ESBL genes than the domestic cattle, suggesting the possibility of multiple ARM sources. These findings raise concerns because the banteng population inhabits an area that is an important source of freshwater and nourishes the entire north-east region of Thailand and other South-east Asian countries, including Laos, Cambodia, and Southern Vietnam

    The occurrence of CTX-M-25-producing Enterobacteriaceae in day-old broiler chicks in Japan

    No full text

    Coexisting arsenate and arsenite adsorption from water using porous pellet adsorbent: Optimization by response surface methodology

    No full text
    Mesoporous pellet adsorbent developed from mixing at an appropriate ratio of natural clay, iron oxide, iron powder, and rice bran was used to investigate the optimization process of batch adsorption parameters for treating aqueous solution coexisting with arsenate and arsenite. Central composite design under response surface methodology was applied for optimizing and observing both individual and interactive effects of four main influential adsorption factors such as contact time (24-72 h), initial solution pH (3-11), adsorbent dosage (0-20 g/L) and initial adsorbate concentration (0.25-4.25 mg/L). Analysis of variance suggested that experimental data were better fitted by the quadratic model with the values of regression coefficient and adjusted regression coefficient higher than 95%. The model accuracy was supported by the correlation plot of actual and predicted adsorption efficiency data and the residual plots. The Pareto analysis suggested that initial solution pH, initial adsorbate concentration, and adsorbent dosage had greater cumulative effects on the removal system by contributing the percentage effect of 47.69%, 37.07% and 14.26%, respectively. The optimum values of contact time, initial solution pH, adsorbent dosage and initial adsorbate concentration were 52 h, 7, 10 g/L and 0.5 mg/L, respectively. The adsorption efficiency of coexisting arsenate and arsenite solution onto the new developed adsorbent was over 99% under the optimized experimental condition
    corecore