24 research outputs found

    Quasi-two-dimensional hole ordering and dimerized state in the CuO2-chain layers in Sr14Cu24O41

    Full text link
    Neutron scattering experiments have been performed on Sr14_{14}Cu24_{24}O41_{41} which consists of both chains and ladders of copper ions. We observed that the magnetic excitations from the CuO2_2 chain have two branches and that both branches are weakly dispersive along the aa and cc axes. The ω\omega-QQ dispersion relation as well as the intensities can be reasonably described by a random phase approximation with intradimer coupling between next-nearest-neighbor copper spins JJ=11 meV, interdimer coupling along the c axis JcJ_c=0.75 meV, and interdimer coupling along the a axis JaJ_a=0.75 meV. The dimer configuration indicates a quasi-two-dimensional hole ordering, resulting in an ordering of magnetic Cu2+^{2+} with spin-1/2 and nonmagnetic Cu, which forms the Zhang-Rice singlet. We have also studied the effect of Ca substitution for Sr on the dimer and the hole ordering.Comment: 7 pages, Revtex, 10 figures, Submitted to Phys. Rev.

    A Model Study of the Low-Energy Charge Dynamics of NaV_2O_5

    Full text link
    An exact-diagonalization technique on small clusters is used to calculate the dynamical density correlation functions of the dimerized t-J chain and coupled anisotropic t-J ladders (trellis lattice) at quarter filling, i.e., the systems regarded as a network of pairs (dimers or rungs) of sites coupled weakly via the hopping and exchange interactions. We thereby demonstrate that the intersite Coulomb repulsions between the pairs induce a low-energy collective mode in the charge excitations of the systems where the internal charge degrees of freedom of the pairs play an essential role. Implications to the electronic states of NaV_2O_5, i.e., fluctuations of the valence state of V ions and phase transition as a charge ordering, are discussed.Comment: 4 pages, 4 gif figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Dzyaloshinskii-Moriya interaction in NaV2_2O5_5: a microscopic study

    Full text link
    We present a unified account of magnetic exchange and Raman scattering in the quasi-one-dimensional transition-metal oxide NaV2_2O5_5. Based on a cluster-model approach explicit expressions for the exchange integral and the Raman-operator are given. It is demonstrated that a combination of the electronic-structure and the Dzyaloshinskii-Moriya interaction, allowed by symmetry in this material, are responsible for the finite Raman cross-section giving rise to both, one- and two-magnon scattering amplitudes.Comment: 7 pages, 1 figur

    X-ray anomalous scattering investigations on the charge order in α\alpha^\prime-NaV2_2O5_5

    Full text link
    Anomalous x-ray diffraction studies show that the charge ordering in α\alpha^\prime-NaV2_2O5_5 is of zig-zag type in all vanadium ladders. We have found that there are two models of the stacking of layers along \emph{c-}direction, each of them consisting of 2 degenerated patterns, and that the experimental data is well reproduced if the 2 patterns appears simultaneously. We believe that the low temperature structure contains stacking faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the tex

    Discussion of a spin-cluster model for the low temperature phase of NaV_2O_5

    Full text link
    We discuss magnetic excitations of a spin-cluster model which has been suggested to describe the low temperature phase of alpha'-NaV_2O_5. This model fulfills all symmetry criteria proposed by recent x-ray investigations. We find that this model is not able to describe the occurence of two well separated magnon lines perpendicular to the ladder direction as observed in INS experiments. We suggest further experimental analysis to generally distinguish between models with double reflection or inversion symmetry.Comment: 4 pages, 4 figures, added a calculation of level repulsio

    Low-Temperature Structure of the Quarter-Filled Ladder Compound alpha'-NaV2O5

    Full text link
    The low-temperature (LT) superstructure of α\alpha'-NaV2_2O5_5 was determined by synchrotron radiation x-ray diffraction. Below the phase transition temperature associated with atomic displacement and charge ordering at 34K, we observed the Bragg peak splittings, which evidence that the LT structure is monoclinic. It was determined that the LT structure is (ab)×2b×4c(a-b)\times 2b \times 4c with the space group A112A112 where a,ba, b and cc represent the high temperature orthorhombic unit cell. The valence estimation of V ions according to the bond valence sum method shows that the V sites are clearly separated into two groups of V4+^{4+} and V5+^{5+} with a zigzagzigzag charge ordering pattern. This LT structure is consistent with resonant x-ray and NMR measurements, and strikingly contrasts to the LT structure previously reported, which includes V4.5+^{4.5+} sites.Comment: 4 pages, 3 figures, 1 tabl

    Magnetic bound states in the quarter-filled ladder system αNaV2O5\alpha'-NaV_{2}O_{5}}

    Full text link
    Raman scattering in the quarter-filled spin ladder system alpha'-NaV_2O_5 shows in the dimerized singlet ground state (TTSP=35KT \leq T_{SP}=35K) an unexpected sequence of three magnetic bound states. Our results suggest that the recently proposed mapping onto an effective spin chain for T>TSPT > T_{SP} has to be given up in favor of the full topology and exchange paths of a ladder in the dimerized phase for T<TSPT < T_{SP}. As the new ground state we propose a dynamic superposition of energetically nearly degenerate dimer configurations on the ladder.Comment: 5 pages, 4 figures, to be published in PRB, brief reports, Dec. 199

    Magnetic properties of a spin-1/2 quadrumer chain

    Full text link
    We study a novel S=1/2 cluster chain Hamiltonian which has recently been proposed in the context of the charge ordered low-temperature phase of alpha'-NaV2O5. We perform a detailed investigation of this model within a large range of parameters using perturbation theory and Lanczos diagonalization. Using model-specific local conservation laws and parameter-dependent mappings to various effective low-energy Hamiltonians we uncover a rich phase diagram and several regimes of gapful spin-excitations. We find that the overall features of recent neutron scattering data on alpha'-NaV2O5 can be fitted within this model, however using a set of parameters which seems unlikely.Comment: 9 pages REVTeX, 11 PostScript figures included using psfig.sty; final version to appear in Phys. Rev. B: New appendix, modified Figs. 1 & 10 and other small change

    Temperature dependence of optical spectral weights in quarter-filled ladder systems

    Full text link
    The temperature dependence of the integrated optical conductivity I(T) reflects the changes of the kinetic energy as spin and charge correlations develop. It provides a unique way to explore experimentally the kinetic properties of strongly correlated systems. We calculated I(T) in the frame of a t-J-V model at quarter-filling for ladder systems, like NaV_2O_5, and show that the measured strong T dependence of I(T) for NaV_2O_5 can be explained by the destruction of short range antiferromagnetic correlations. Thus I(T) provides detailed information about super-exchange and magnetic energy scales.Comment: 4 pages, 5 figure

    Charge-ordering phase transition and order-disorder effects in the Raman spectra of NaV2O5

    Full text link
    In the ac polarized Raman spectra of NaV2O5 we have found anomalous phonon broadening, and an energy shift of the low-frequency mode as a function of the temperature. These effects are related to the breaking of translational symmetry, caused by electrical disorder that originates from the fluctuating nature of the V {4.5+} valence state of vanadium. The structural correlation length, obtained from comparisons between the measured and calculated Raman scattering spectra, diverges at T< 5 K, indicating the existence of the long-range charge order at very low temperatures, probably at T=0 K.Comment: 8 pages, 4 figures, new version, to appear in PR
    corecore