912 research outputs found
Application of Neural-Network Technique to Analysis of PIXE Spectra
開始ページ、終了ページ: 冊子体のページ付
Cleavage of Amyloid-β Precursor Protein (APP) by Membrane-Type Matrix Metalloproteinases
Division of Molecular Viology and Oncolog
Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}
In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR)
are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals
with various carrier concentrations, from underdope to overdope. Our crystals
show the highest T_c (33 K) and the smallest residual resistivity ever reported
for Bi-2201 at optimum doping. It is found that the temperature dependence of
the Hall angle obeys a power law T^n with n systematically decreasing with
increasing doping, which questions the universality of the Fermi-liquid-like
T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of
the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab}
shows a good T-linear behavior. The systematics of the MR indicates an
increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure
Prebiotic Organic Microstructures
Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N2 and H2O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced wide variety of proteinous and non-proteinous amino acids after HCl hydrolysis. The enantiomer analysis for D-, L- alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. Considering hydrothermal activity, the presence of CO2 and H2, of a ferromagnesian silicate mineral environment, of an Earth magnetic field which was much less intense during Archean times than nowadays and consequently of a proton excitation source which was much more abundant, we propose that our laboratory organic microstructures might be synthesized during Archean times. We show similarities in morphology and in formation with some terrestrial Archean microstructures and we suggest that some of the observed Archean carbon spherical and filamentous microstructures might be composed of abiogenic organic molecules. We further propose a search for such prebiotic organic signatures on Mars. This article has been posted on Nature precedings on 21 July 2010 [1]. Extinct radionuclides as source of excitation have been replaced by cosmic radiations which were much more intense 3.5 Ga ago because of a much less intense Earth magnetic field. The new version of the article has been presented at the ORIGINS conference in Montpellier in july 2011 [2] and has since been published in Origins of Life and Evolution of Biospheres 42 (4) 307-316, 2012. 
DOI: 10.1007/s11084-012-9290-5 


Nature of the Electronic Excitations near the Brillouin Zone Boundary of BiSrCaCuO
Based on angle resolved photoemission spectra measured on different systems
at different dopings, momenta and photon energies, we show that the anomalously
large spectral linewidth in the region of optimal doped and
underdoped BiSrCaCuO has significant contributions
from the bilayer splitting, and that the scattering rate in this region is
considerably smaller than previously estimated. This new picture of the
electronic excitation near puts additional experimental constraints
on various microscopic theories and data analysis.Comment: 5 pages, 4 figure
Feasibility and safety of endoscopic submucosal dissection for lesions in proximity to a colonic diverticulum
Background/Aims: Endoscopic submucosal dissection (ESD) for diverticulum-associated colorectal lesions is generally contraindicated because of the high risk of perforation. Several studies on patients with such lesions treated with ESD have been reported recently. However, the feasibility and safety of ESD for lesions in proximity to a colonic diverticulum (D-ESD) have not been fully clarified. The aim of this study was to evaluate the feasibility and safety of D-ESD. Methods: D-ESD was defined as ESD for lesions within approximately 3 mm of a diverticulum. Twenty-six consecutive patients who underwent D-ESD were included. Two strategic approaches were used depending on whether submucosal dissection of the diverticulum-related part was required (strategy B) or not (strategy A). Treatment outcomes and adverse events associated with each strategy were analyzed. Results: The en bloc resection rate was 96.2%. The R0 and curative resection rates were 76.4% and 70.6% in strategy A and 88.9% and 77.8% in strategy B, respectively. Two cases of intraoperative perforation and one case of delayed perforation occurred. The delayed perforation case required emergency surgery, but the other cases were managed conservatively. Conclusions: D-ESD may be a feasible treatment option. However, it should be performed in a high-volume center by expert hands because it requires highly skilled endoscopic techniques
suppression in co-doped striped cuprates
We propose a model that explains the reduction of due to the pinning of
stripes by planar impurity co-doping in cuprates. A geometrical argument about
the planar fraction of carriers affected by stripe pinning leads to a a linear
suppression as a function of impurity concentration . The critical
value for the vanishing of superconductivity is shown to scale like
in the under-doped regime and becomes universal in the optimally- and
over-doped regimes. Our theory agrees very well with the experimental data in
single- and bi-layer cuprates co-doped with Zn, Li, Co, etc...Comment: 4 pages, 4 figure
Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling
Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose
- …