47 research outputs found

    介護計画立案時における介護職員の判断基準に関する研究(1) : B指定介護老人福祉施設の介護計画にみる実態調査

    Get PDF
    指定介護老人福祉施設では、利用者に対してサービス提供をする場合、次の4つのケア過程を踏まえていると考える。第一に、利用者の情報を収集し、アセスメントを行うという過程。第二にアセスメントした内容を基にして、提供すべきケアサービスを決定する「施設介護計画(以下ケアプラン)」立案過程。第三に決定されたケアプランの内容に従い、実際にサービスを提供する提供過程。そして第四に、一定の時期に再度、利用者のアセスメントを行い施設サービス内容の点検及び評価を行う再評価過程である。このように一連のケア過程を、「介護支援専門員(以下ケアマネージャー)」等が中心となって、他の介護職員との協働でケアプランは立案されている。本調査は指定介護老人福祉施設の介護職員が、介護計画を立案する際、利用者のどのような情報等を基にして、ケアサービスを判断しているのかを明らかにすることを目的とした。調査の結果によると、介護職員はケアプラン作成時において利用者の身体的状況や、精神的状況に着目し、利用者にとって必要なケアサービスを判断している。なかでも利用者にとって、必要ケアサービスは予防を念頭においたケアプラン立案となっている。だが、調査で注目する点はアセスメント時において、介護職員の多くは利用者の目標と介護職員が提供すべきケアの目標を同一化していることである。そのため、どちらの目標であるのか具体性に欠ける内容となっていた。利用者のアセスメントを行う場合、両者を分けたアセスメントが必要であると考える

    Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical outcome of patients with high-grade ccRCC (clear cell renal cell carcinoma) remains still poor despite recent advances in treatment strategies. Molecular mechanism of pathogenesis in developing high-grade ccRCC must be clarified. In the present study, we found that SAV1 was significantly downregulated with copy number loss in high-grade ccRCCs. Therefore, we investigated the SAV1 function on cell proliferation and apoptosis in vitro. Furthermore, we attempted to clarify the downstream signaling which is regulated by SAV1.</p> <p>Methods</p> <p>We performed array CGH and gene expression analysis of 8 RCC cell lines (786-O, 769-P, KMRC-1, KMRC-2, KMRC-3, KMRC-20, TUHR4TKB, and Caki-2), and expression level of mRNA was confirmed by quantitative RT-PCR (qRT-PCR) analysis. We next re-expressed SAV1 in 786-O cells, and analyzed its colony-forming activity. Then, we transfected siRNAs of SAV1 into the kidney epithelial cell line HK2 and renal proximal tubule epithelial cells (RPTECs), and analyzed their proliferation and apoptosis. Furthermore, the activity of YAP1, which is a downstream molecule of SAV1, was evaluated by western blot analysis, reporter assay and immunohistochemical analysis.</p> <p>Results</p> <p>We found that SAV1, a component of the Hippo pathway, is frequently downregulated in high-grade ccRCC. SAV1 is located on chromosome 14q22.1, where copy number loss had been observed in 7 of 12 high-grade ccRCCs in our previous study, suggesting that gene copy number loss is responsible for the downregulation of SAV1. Colony-forming activity by 786-O cells, which show homozygous loss of SAV1, was significantly reduced when SAV1 was re-introduced exogenously. Knockdown of SAV1 promoted proliferation of HK2 and RPTEC. Although the phosphorylation level of YAP1 was low in 786-O cells, it was elevated in SAV1-transduced 786-O cells. Furthermore, the transcriptional activity of the YAP1 and TEAD3 complex was inhibited in SAV1-transduced 786-O cells. Immunohistochemistry frequently demonstrated nuclear localization of YAP1 in ccRCC cases with SAV1 downregulation, and it was preferentially detected in high-grade ccRCC.</p> <p>Conclusions</p> <p>Taken together, downregulation of SAV1 and the consequent YAP1 activation are involved in the pathogenesis of high-grade ccRCC. It is an attractive hypothesis that Hippo signaling could be candidates for new therapeutic target.</p

    Genomic Profiling of Submucosal-Invasive Gastric Cancer by Array-Based Comparative Genomic Hybridization

    Get PDF
    Genomic copy number aberrations (CNAs) in gastric cancer have already been extensively characterized by array comparative genomic hybridization (array CGH) analysis. However, involvement of genomic CNAs in the process of submucosal invasion and lymph node metastasis in early gastric cancer is still poorly understood. In this study, to address this issue, we collected a total of 59 tumor samples from 27 patients with submucosal-invasive gastric cancers (SMGC), analyzed their genomic profiles by array CGH, and compared them between paired samples of mucosal (MU) and submucosal (SM) invasion (23 pairs), and SM invasion and lymph node (LN) metastasis (9 pairs). Initially, we hypothesized that acquisition of specific CNA(s) is important for these processes. However, we observed no significant difference in the number of genomic CNAs between paired MU and SM, and between paired SM and LN. Furthermore, we were unable to find any CNAs specifically associated with SM invasion or LN metastasis. Among the 23 cases analyzed, 15 had some similar pattern of genomic profiling between SM and MU. Interestingly, 13 of the 15 cases also showed some differences in genomic profiles. These results suggest that the majority of SMGCs are composed of heterogeneous subpopulations derived from the same clonal origin. Comparison of genomic CNAs between SMGCs with and without LN metastasis revealed that gain of 11q13, 11q14, 11q22, 14q32 and amplification of 17q21 were more frequent in metastatic SMGCs, suggesting that these CNAs are related to LN metastasis of early gastric cancer. In conclusion, our data suggest that generation of genetically distinct subclones, rather than acquisition of specific CNA at MU, is integral to the process of submucosal invasion, and that subclones that acquire gain of 11q13, 11q14, 11q22, 14q32 or amplification of 17q21 are likely to become metastatic

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Upregulation of miR-30d in Persistent AF

    Get PDF
    Background: Atrial fibrillation (AF) begets AF in part due to atrial remodeling, the molecular mechanisms of which have not been completely elucidated. This study was conducted to identify microRNA(s) responsible for electrical remodeling in AF. Methods and Results: The expression profiles of 1205 microRNAs, in cardiomyocytes from patients with persistent AF and from age-, gender-, and cardiac function-matched control patients with normal sinus rhythm, were examined by use of a microRNA microarray platform. Thirty-nine microRNAs differentially expressed in AF patients’ atria were identified, including miR-30d, as a candidate responsible for ion channel remodeling by in silico analysis. MiR-30d was significantly upregulated in cardiomyocytes from AF patients, whereas the mRNA and protein levels of CACNA1C/ Cav1.2 and KCNJ3/Kir3.1, postulated targets of miR-30d, were markedly reduced. KCNJ3/Kir3.1 expression was downregulated by transfection of the miR-30 precursor, concomitant with a reduction of the acetylcholine-sensitive inward-rectifier K+ current (IK.ACh). KCNJ3/Kir3.1 (but not CACNA1C/Cav1.2) expression was enhanced by the knockdown of miR-30d. The Ca2+ ionophore, A23187, induced a dose-dependent upregulation of miR-30d, followed by the suppression of KCNJ3 mRNA expression. Blockade of protein kinase C signaling blunted the [Ca2+]i-dependent downregulation of Kir3.1 via miR-30d. Conclusions: The downward remodeling of IK.ACh is attributed, at least in part, to deranged Ca2+ handling, leading to the upregulation of miR-30d in human AF, revealing a novel post-transcriptional regulation of IK.ACh

    Λ polarization measurement of the

    No full text
    We performed the J-PARC E40 experiment to measure the Σp scattering cross sections from 2018 to 2020. Together with the π−p → K+Σ− data, the π−p → K0Λ data were accumulated as a byproduct. The analysis confirmed that Λ could be identified with an S/N ratio of ∼ 2.67. The polarization of Λ(PΛ) was preliminarily derived as 1.009 ± 0.049 for the K0 angular range of 0.7 < cos θK0, CM < 0.8. It is more accurate than the past data [1]. The high polarization enables us to measure not only the differential cross section but also spin observables of the Λp scattering in the future J-PARC experiment
    corecore