10 research outputs found

    An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia

    Get PDF
    Energy stress, such as ischemia, induces mitochondrial damage and death in the heart. Degradation of damaged mitochondria by mitophagy is essential for the maintenance of healthy mitochondria and survival. Here, we show that mitophagy during myocardial ischemia was mediated predominantly through autophagy characterized by Rab9-associated autophagosomes, rather than the well-characterized form of autophagy that is dependent on the autophagy-related 7 (Atg) conjugation system and LC3. This form of mitophagy played an essential role in protecting the heart against ischemia and was mediated by a protein complex consisting of unc-51 like kinase 1 (Ulk1), Rab9, receptor-interacting serine/ thronine protein kinase 1 (Rip1), and dynamin-related protein 1 (Drp1). This complex allowed the recruitment of transGolgi membranes associated with Rab9 to damaged mitochondria through S179 phosphorylation of Rab9 by Ulk1 and S616 phosphorylation of Drp1 by Rip1. Knockin of Rab9 (S179A) abolished mitophagy and exacerbated the injury in response to myocardial ischemia, without affecting conventional autophagy. Mitophagy mediated through the Ulk1/Rab9/Rip1/Drp1 pathway protected the heart against ischemia by maintaining healthy mitochondria

    Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart?

    No full text
    Autophagy is a catabolic process that degrades long-lived proteins and damaged organelles by sequestering them into double membrane structures termed "autophagosomes" and fusing them with lysosomes. Autophagy is active in the heart at baseline and further stimulated under stress conditions including starvation, ischemia/reperfusion, and heart failure. It plays an adaptive role in the heart at baseline, thereby maintaining cardiac structure and function and inhibiting age-related cardiac abnormalities. Autophagy is activated by ischemia and nutrient starvation in the heart through Sirt1-FoxO- and adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanisms, respectively. Activation of autophagy during ischemia is essential for cell survival and maintenance of cardiac function. Autophagy is strongly activated in the heart during reperfusion after ischemia. Activation of autophagy during reperfusion could be either protective or detrimental, depending on the experimental model. However, strong induction of autophagy accompanied by robust upregulation of Beclin1 could cause autophagic cell death, thereby proving to be detrimental. This review provides an overview regarding both protective and detrimental functions of autophagy in the heart and discusses possible applications of current knowledge to the treatment of heart disease
    corecore