65 research outputs found

    Serum Cytokines Usefulness for Understanding the Pathology in Allergic Bronchopulmonary Aspergillosis and Chronic Pulmonary Aspergillosis

    Get PDF
    Allergic bronchopulmonary aspergillosis (ABPA) and chronic pulmonary aspergillosis (CPA) are important fungal infections caused by Aspergillus species. An overlap of ABPA and CPA has been reported; therefore, it is critical to determine whether the main pathology is ABPA or CPA and whether antifungals are required. In this study, we investigated whether the serum cytokine profile is useful for understanding the pathology and for differentiating between these diseases. We compared the various serum cytokine levels among healthy subjects and patients diagnosed with asthma, ABPA, or CPA at Nagasaki University Hospital between January 2003 and December 2018. In total, 14 healthy subjects, 19 patients with asthma, 11 with ABPA, and 10 with CPA were enrolled. Interleukin (IL) -5 levels were significantly higher in patients with ABPA than in those with CPA, and IL-33 and tumor necrosis factor (TNF) levels were significantly higher in patients with CPA than in those with asthma (p < 0.05, Dunn’s multiple comparison test). The sensitivity and specificity of the IL-10/IL-5 ratio (cutoff index 2.47) for diagnosing CPA were 70% and 100%, respectively. The serum cytokine profile is useful in understanding the pathology of ABPA and CPA, and the IL-10/IL-5 ratio may be a novel supplemental biomarker for indicating the pathology of CPA

    Colocalization of 14-3-3 Proteins with SOD1 in Lewy Body-Like Hyaline Inclusions in Familial Amyotrophic Lateral Sclerosis Cases and the Animal Model

    Get PDF
    Background and Purpose: Cu/Zn superoxide dismutase (SOD1) is a major component of Lewy body-like hyaline inclusion (LBHI) found in the postmortem tissue of SOD1-linked familial amyotrophic lateral sclerosis (FALS) patients. In our recent studies, 14-3-3 proteins have been found in the ubiquitinated inclusions inside the anterior horn cells of spinal cords with sporadic amyotrophic lateral sclerosis (ALS). To further investigate the role of 14-3-3 proteins in ALS, we performed immunohistochemical analysis of 14-3-3 proteins and compared their distributions with those of SOD1 in FALS patients and SOD1-overexpressing mice. Methods: We examined the postmortem brains and the spinal cords of three FALS cases (A4V SOD1 mutant). Transgenic mice expressing the G93A mutant human SOD1 (mutant SOD1-Tg mice), transgenic mice expressing the wild-type human SOD1 (wild-type SOD1-Tg mice), and non-Tg wild-type mice were also subjected to the immunohistochemical analysis. Results: In all the FALS patients, LBHIs were observed in the cytoplasm of the anterior horn cells, and these inclusions were immunopositive intensely for pan 14-3-3, 14-3-3β\beta, and 14-3-3γ\gamma. In the mutant SOD1-Tg mice, a high degree of immunoreactivity for misfolded SOD1 (C4F6) was observed in the cytoplasm, with an even greater degree of immunoreactivity present in the cytoplasmic aggregates of the anterior horn cells in the lumbar spinal cord. Furthermore, we have found increased 14-3-3β\beta and 14-3-3γ\gamma immunoreactivities in the mutant SOD1-Tg mice. Double immunofluorescent staining showed that C4F6 and 14-3-3 proteins were partially co-localized in the spinal cord with FALS and the mutant SOD1-Tg mice. In comparison, the wild-type SOD1-Tg and non-Tg wild-type mice showed no or faint immunoreactivity for C4F6 and 14-3-3 proteins (pan 14-3-3, 14-3-3β\beta, and 14-3-3γ\gamma) in any neuronal compartments. Discussion: These results suggest that 14-3-3 proteins may be associated with the formation of SOD1-containing inclusions, in FALS patients and the mutant SOD1-Tg mice.Mathematic

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    INDUCED RADIOACTIVITY IN CU TARGETS PRODUCED BY HIGH-ENERGY HEAVY IONS AND THE CORRESPONDING ESTIMATED PHOTON DOSE RATES

    No full text
    Irradiation experiments were performed at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility, National Institute of Radiological Sciences. The radioactive spallation products in a thick Cu target were obtained for Ar(230, 400 MeV per nucleon), Si(800 MeV per nucleon), Ne(100, 230, 400 MeV per nucleon), C(100, 230, 400 MeV per nucleon), He(100, 230 MeV per nucleon), p(100, 230 MeV) ions. The gamma-ray spectra from irradiated Cu samples inserted into the composite Cu target were measured with a high-purity germanium (HPGe) detector. From the gamma-ray spectra, we obtained the spatial distribution of radioactive yields of spallation products of 40 nuclides in the Cu sample in the Cu target. From the spatial distribution of radioactive yields, we estimated the residual activity and photon dose induced in the Cu target. The residual activity and photon dose become larger with the increase in projectile energy per nucleon and the range of the projectile beam for the same projectile energy per nucleon
    corecore