27 research outputs found

    Investigation of uncertainty in internal target volume definition for lung stereotactic body radiotherapy

    Get PDF
    This study evaluated the validity of internal target volumes (ITVs) defined by three- (3DCT) and four-dimensional computed tomography (4DCT), and subsequently compared them with actual movements during treatment. Five patients with upper lobe lung tumors were treated with stereotactic body radiotherapy (SBRT) at 48 Gy in four fractions. Planning 3DCT images were acquired with peak-exhale and peak-inhale breath-holds, and 4DCT images were acquired in the cine mode under free breathing. Cine images were acquired using an electronic portal imaging device during irradiation. Tumor coverage was evaluated based on the manner in which the peak-to-peak breathing amplitude on the planning CT covered the range of tumor motion (± 3 SD) during irradiation in the left–right, anteroposterior, and cranio-caudal (CC) directions. The mean tumor coverage of the 4DCT-based ITV was better than that of the 3DCT-based ITV in the CC direction. The internal margin should be considered when setting the irradiation field for 4DCT. The proposed 4DCT-based ITV can be used as an efficient approach in free-breathing SBRT for upper-lobe tumors of the lung because its coverage is superior to that of 3DCT

    Prediction of Consolidation Tumor Ratio on Planning CT Images of Lung Cancer Patients Treated with Radiotherapy Based on Deep Learning

    No full text
    This study aimed to propose an automated prediction approach of the consolidation tumor ratios (CTRs) of part-solid tumors of patients treated with radiotherapy on treatment planning computed tomography images using deep learning segmentation (DLS) models. For training the DLS model for cancer regions, a total of 115 patients with non-small cell lung cancer (NSCLC) who underwent stereotactic body radiation therapy were selected as the training dataset, including solid, part-solid, and ground-glass opacity tumors. For testing the automated prediction approach of CTRs based on segmented tumor regions, 38 patients with part-solid tumors were selected as an internal test dataset A (IN) from a same institute as the training dataset, and 49 patients as an external test dataset (EX) from a public database. The CTRs for part-solid tumors were predicted as ratios of the maximum diameters of solid components to those of whole tumors. Pearson correlations between reference and predicted CTRs for the two test datasets were 0.953 (IN) and 0.926 (EX) for one of the DLS models (p < 0.01). Intraclass correlation coefficients between reference and predicted CTRs for the two test datasets were 0.943 (IN) and 0.904 (EX) for the same DLS models. The findings suggest that the automated prediction approach could be robust in calculating the CTRs of part-solid tumors

    Investigation of uncertainty in internal target volume definition for lung stereotactic body radiotherapy

    No full text
    This study evaluated the validity of internal target volumes (ITVs) defined by three- (3DCT) and four-dimensional computed tomography (4DCT), and subsequently compared them with actual movements during treatment. Five patients with upper lobe lung tumors were treated with stereotactic body radiotherapy (SBRT) at 48 Gy in four fractions. Planning 3DCT images were acquired with peak-exhale and peak-inhale breath-holds, and 4DCT images were acquired in the cine mode under free breathing. Cine images were acquired using an electronic portal imaging device during irradiation. Tumor coverage was evaluated based on the manner in which the peak-to-peak breathing amplitude on the planning CT covered the range of tumor motion (± 3 SD) during irradiation in the left–right, anteroposterior, and cranio-caudal (CC) directions. The mean tumor coverage of the 4DCT-based ITV was better than that of the 3DCT-based ITV in the CC direction. The internal margin should be considered when setting the irradiation field for 4DCT. The proposed 4DCT-based ITV can be used as an efficient approach in free-breathing SBRT for upper-lobe tumors of the lung because its coverage is superior to that of 3DCT

    Clinical significance of CDKN2A

    No full text
    OBJECTIVE: Accumulating evidence from recent molecular diagnostic studies has indicated the prognostic significance of various genetic markers for patients with glioblastoma (GBM). To evaluate the impact of such genetic markers on prognosis, we retrospectively analyzed the outcomes of patients with IDH-wildtype GBM in our institution. In addition, to assess the impact of bevacizumab (BEV) treatment, we compared overall survival (OS) between the pre- and post-BEV eras. METHODS: We analyzed the data of 100 adult patients (over 18&nbsp;years old) with IDH-wildtype GBM from our database between February 2006 and October 2018. Genetic markers, such as MGMT methylation status, EGFR amplification, CDKN2A homozygous deletion, and clinical factors were analyzed by evaluating the patients OS. RESULTS: CDKN2A homozygous deletion showed no significant impact on OS in patients with methylated MGMT status (p&nbsp;=&nbsp;0.5268), whereas among patients with unmethylated MGMT status, there was a significant difference in OS between patients with and without CDKN2A homozygous deletion (median OS: 14.7 and 16.9&nbsp;months, respectively, p&nbsp;=&nbsp;0.0129). This difference was more evident in the pre-BEV era (median OS: 10.1 and 15.6&nbsp;months, respectively, p&nbsp;=&nbsp;0.0351) but has become nonsignificant in the post-BEV era (median OS: 16.0 and 16.9&nbsp;months, respectively, p&nbsp;=&nbsp;0.1010) due to OS improvement in patients with CDKN2A homozygous deletion. However, these findings could not be validated in The Cancer Genome Atlas cohort. CONCLUSIONS: MGMT and CDKN2A status subdivided our cohort into three race-specific groups with different prognoses. Our findings indicate that BEV approval in Japan led to OS improvement exclusively for patients with concurrent unmethylated MGMT status and CDKN2A homozygous deletion
    corecore