34 research outputs found

    PET Studies of Cerebral Levodopa Metabolism: A Review of Clinical Findings and Modeling Approaches

    Get PDF
    [18F]Fluoro-3,4-dihydroxyphenyl-l-alanine (FDOPA) was one of the first successful tracers for molecular imaging by positron emission tomography (PET), and has proven immensely valuable for studies of Parkinson’s disease. Following intravenous FDOPA injection, the decarboxylated metabolite [18F] fluorodopamine is formed and trapped within terminals of the nigrostriatal dopamine neurons; reduction in the simple ratio between striatum and cerebellum is indicative of nigrostriatal degeneration. However, the kinetic analysis of dynamic FDOPA-PET recordings is formidably complex due to the entry into brain of the plasma metabolite O-methyl-FDOPA and due to the eventual washout of decarboxylated metabolites. Linear graphical analysis relative to a reference tissue input function is popular and convenient for routine clinical studies in which serial arterial blood samples are unavailable. This simplified approach has facilitated longitudinal studies in large patient cohorts. Linear graphical analysis relative to the metabolite-corrected arterial FDOPA input yields a more physiological index of FDOPA utilization, the net blood-brain clearance. Using a constrained compartmental model, FDOPA-PET recordings can be used to calculate the relative activity of the enzyme DOPA decarboxylase in living brain. We have extended this approach so as to obtain an index of steady-state trapping of [18F]fluorodopamine in synaptic vesicles. Although simple methods of image analysis are sufficient for the purposes of routine clinical studies, the more complex approaches have revealed hidden aspects of brain dopamine in personality, healthy aging, and in the pathophysiologies of Parkinson’s disease and schizophrenia

    Comparative transient expression analyses on two conserved effectors of Colletotrichum orbiculare reveal their distinct cell death‐inducing activities between Nicotiana benthamiana and melon

    Get PDF
    Colletotrichum orbiculare infects cucurbits, such as cucumber and melon (Cucumis melo), as well as the model Solanaceae plant Nicotiana benthamiana, by secreting an arsenal of effectors that suppress the immunity of these distinct plants. Two conserved effectors of C. orbiculare, called NLP1 and NIS1, induce cell death responses in N. benthamiana, but it is unclear whether they exhibit the same activity in Cucurbitaceae plants. In this study, we established a new Agrobacterium-mediated transient expression system to investigate the cell death-inducing activity of NLP1 and NIS1 in melon. NLP1 strongly induced cell death in melon but, in contrast to the effects seen in N. benthamiana, mutations either in the heptapeptide motif or in the putative glycosylinositol phosphorylceramide-binding site did not cancel its cell death-inducing activity in melon. Furthermore, NLP1 lacking the signal peptide caused cell death in melon but not in N. benthamiana. Study of the transient expression of NIS1 also revealed that, unlike in N. benthamiana, NIS1 did not induce cell death in melon. In contrast, NIS1 suppressed flg22-induced reactive oxygen species generation in melon, as seen in N. benthamiana. These findings indicate distinct cell death-inducing activities of NLP1 and NIS1 in these two plant species that C. orbiculare infects

    Механизм самовозгорания угля

    Get PDF
    В работе проведено моделирование процесса зарождения очага эндогенного пожара и намечены пути мобильного определение вероятности его возникновения или наличия. Механизм самовозгорания учитывает процессы тепловыделения при нагревании угля, выделения летучих продуктов, трещинообразование и изменение режима доступа кислорода в очаг реакции в ходе его эволюции. Проведено математическое моделирование процесса самовозгорания угля трех марок угля - антрацит, коксующийся, жирный, проведен расчет динамики температурных полей на поверхности очага самовозгорания, определены критические условия. Для мобильного определения вероятности возникновения или наличия эндогенного пожара предложено использовать беспилотные летательные аппараты.In this work simulation of spontaneous combustion of coal of three grades - anthracite, coking coal, fat in case of lack of oxygen supply and calculation of dynamics of the temperature fields on the surface was made, critical conditions of the hearth of spontaneous combustion were estimated. The mechanism takes into account the processes of heat release, the release of volatile products, cracking and changes in the mode of access of oxygen to the reaction center during its evolution

    PET Studies of Cerebral Levodopa Metabolism: A Review of Clinical Findings and Modeling Approaches

    Get PDF
    [18F]Fluoro-3,4-dihydroxyphenyl-l-alanine (FDOPA) was one of the first successful tracers for molecular imaging by positron emission tomography (PET), and has proven immensely valuable for studies of Parkinson’s disease. Following intravenous FDOPA injection, the decarboxylated metabolite [18F] fluorodopamine is formed and trapped within terminals of the nigrostriatal dopamine neurons; reduction in the simple ratio between striatum and cerebellum is indicative of nigrostriatal degeneration. However, the kinetic analysis of dynamic FDOPA-PET recordings is formidably complex due to the entry into brain of the plasma metabolite O-methyl-FDOPA and due to the eventual washout of decarboxylated metabolites. Linear graphical analysis relative to a reference tissue input function is popular and convenient for routine clinical studies in which serial arterial blood samples are unavailable. This simplified approach has facilitated longitudinal studies in large patient cohorts. Linear graphical analysis relative to the metabolite-corrected arterial FDOPA input yields a more physiological index of FDOPA utilization, the net blood-brain clearance. Using a constrained compartmental model, FDOPA-PET recordings can be used to calculate the relative activity of the enzyme DOPA decarboxylase in living brain. We have extended this approach so as to obtain an index of steady-state trapping of [18F]fluorodopamine in synaptic vesicles. Although simple methods of image analysis are sufficient for the purposes of routine clinical studies, the more complex approaches have revealed hidden aspects of brain dopamine in personality, healthy aging, and in the pathophysiologies of Parkinson’s disease and schizophrenia

    Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles.

    Get PDF
    Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches

    Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    No full text
    Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D(2/3) receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an inverted-U-shaped correlation between ratings of sensation seeking on the Zuckerman scale and dopamine D(2/3) receptor availability. To test the claim of an inverted-U-shaped relation between ratings of the sensation-seeking personality and measures of dopamine receptor availability, we used PET to record [(11)C]raclopride binding in striatum of 18 healthy men. Here we report that an inverted-U shape significantly matched the receptor availability as a function of the Zuckerman score, with maximum binding potentials observed in the midrange of the scale. The inverted-U shape is consistent with a negative correlation between sensation seeking and the reactivity (“gain”) of dopaminergic neurotransmission to dopamine. The correlation reflects Zuckerman scores that are linearly linked to dopamine receptor densities in the striatum but nonlinearly linked to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials
    corecore