290 research outputs found

    Low-frequency maternal novel MYH7 mosaicism mutation in recurrent fetal-onset severe left ventricular noncompaction: a case report

    Get PDF
    BackgroundLeft ventricular noncompaction (LVNC) is a rare inherited cardiomyopathy with a broad phenotypic spectrum. The genotype-phenotype correlations in fetal-onset LVNC have not yet been fully elucidated. In this report, we present the first case of severe fetal-onset LVNC caused by maternal low-frequency somatic mosaicism of the novel myosin heavy chain 7 (MYH7) mutation.Case presentationA 35-year-old pregnant Japanese woman, gravida 4, para 2, with no significant medical or family history of genetic disorders, presented to our hospital. In her previous pregnancy at 33 years of age, she delivered a male neonate at 30 weeks of gestation with cardiogenic hydrops fetalis. Fetal echocardiography confirmed LVNC prenatally. The neonate died shortly after birth. In the current pregnancy, she again delivered a male neonate with cardiogenic hydrops fetalis caused by LVNC at 32 weeks of gestation. The neonate died shortly after birth. Genetic screening of cardiac disorder-related genes by next-generation sequencing (NGS) was performed which revealed a novel heterozygous missense MYH7 variant, NM_000257.3: c.2729A > T, p.Lys910Ile. After targeted and deep sequencing by NGS, the same MYH7 variant (NM_000257.3: c.2729A > T, p.Lys910Ile) was detected in 6% of the variant allele fraction in the maternal sequence but not in the paternal sequence. The MYH7 variant was not detected by conventional direct sequencing (Sanger sequencing) in either parent.ConclusionsThis case demonstrates that maternal low-frequency somatic mosaicism of an MYH7 mutation can cause fetal-onset severe LVNC in the offspring. To differentiate hereditary MYH7 mutations from de novo MYH7 mutations, parental targeted and deep sequencing by NGS should be considered in addition to Sanger sequencing

    Teleconnections of the Quasi‐Biennial Oscillation in a multi‐model ensemble of QBO‐resolving models

    Get PDF
    The Quasi-biennial Oscillation (QBO) dominates the interannual variability of the tropical stratosphere and influences other regions of the atmosphere. The high predictability of the QBO implies that its teleconnections could lead to increased skill of seasonal and decadal forecasts provided the relevant mechanisms are accurately represented in models. Here modelling and sampling uncertainties of QBO teleconnections are examined using a multi-model ensemble of QBO-resolving atmospheric general circulation models that have carried out a set of coordinated experiments as part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) QBO initiative (QBOi). During Northern Hemisphere winter, the stratospheric polar vortex in most of these models strengthens when the QBO near 50 hPa is westerly and weakens when it is easterly, consistent with, but weaker than, the observed response. These weak responses are likely due to model errors, such as systematically weak QBO amplitudes near 50 hPa, affecting the teleconnection. The teleconnection to the North Atlantic Oscillation is less well captured overall, but of similar strength to the observed signal in the few models that do show it. The models do not show clear evidence of a QBO teleconnection to the Northern Hemisphere Pacific-sector subtropical jet

    Three-dimensional structures of tropical nonmigrating tides in a high-vertical-resolution general circulation model

    Get PDF
    This paper investigates nonmigrating tides from the ground to the lower mesosphere using data from a high-resolution general circulation model (KANTO GCM), as well as observational data from the Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite and from GPS radio occultation measurements obtained with the COSMIC/FORMOSAT-3 mission. We extract nonmigrating tides using a composite as a function of universal time in physical space, without performing a zonal wave number decomposition. The KANTO GCM clearly demonstrates that tropical nonmigrating tides are regarded as gravity waves excited by diabatic heating enhanced over two major continents, specifically Africa and South America. They propagate zonally, in a direction away from their sources; that is, west and eastward propagating waves are dominant on the western and eastern sides of the continents, respectively. These characteristics are observed in two satellite data sets as well, except that the amplitudes in the KANTO GCM are larger than those in the observations. Seasonal variations of nonmigrating tides are also investigated. It is suggested that filtering owing to the stratopause semiannual oscillation, as well as diabatic heating in the troposphere, is important for the seasonal variations of nonmigrating tides in the stratosphere and the lower mesosphere
    corecore