2,923 research outputs found

    Interference Commensurate Oscillations in Q1D Conductors

    Full text link
    We suggest an analytical theory to describe angular magnetic oscillations recently discovered in quasi-one-dimensional conductor (TMTSF)2PF6 [see Phys. Rev. B, 57, 7423 (1998)] and define the positions of the oscillation minima. The origin of these oscillations is related to interference effects resulting from an interplay of quasi-periodic and periodic ("commensurate") electron trajectories in an inclined magnetic field. We reproduce via calculations existing experimental data and predict some novel effects.Comment: 10 pages, 2 figure

    Vortex jamming in superconductors and granular rheology

    Full text link
    We demonstrate that a highly frustrated anisotropic Josephson junction array(JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i. e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress vs shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic fragile vortex matter : it behaves as superconductor (vortex glass) into one direction while normal conductor (vortex liquid) into the other direction even at zero temperature. Furthermore we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields - the rheology of soft materials and superconductivity.Comment: 10 pages, 5 figures. To appear in New Journal of Physic

    Oscillator strengths and line widths of dipole-allowed transitions in ¹⁴N₂ between 89.7 and 93.5 nm

    Get PDF
    Line oscillator strengths in the 20 electric dipole-allowed bands of ¹⁴N₂ in the 89.7–93.5nm (111480–106950cm⁻¹) region are reported from photoabsorptionmeasurements at an instrumental resolution of ∼6mÅ (0.7cm⁻¹) full width at half maximum. The absorptionspectrum comprises transitions to vibrational levels of the 3pσᵤc′₄¹Σᵤ⁺, 3pπᵤc³Πᵤ, and 3sσgo₃¹ΠᵤRydberg states and of the b′¹Σᵤ⁺ and b¹Πᵤ valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J′(J′+1) and are extrapolated to J′=0 in order to facilitate comparisons with results of coupled Schrödinger-equation calculations. Most bands in this study are characterized by a strong J dependence of the band f values and display anomalous P-, Q-, and R-branch intensity patterns. Predissociation line widths, which are reported for 11 bands, also exhibit strong J dependences. The f value and line width patterns can inform current efforts to develop comprehensive spectroscopic models that incorporate rotational effects and predissociation mechanisms, and they are critical for the construction of realistic atmospheric radiative-transfer models.This work was supported in part by NASA Grant No. NNG05GA03G to Wellesley College and Australian Research Council Discovery Program Grant No. DP0558962

    On topological charged braneworld black holes

    Full text link
    We study a class of topological black hole solutions in RSII braneworld scenario in the presence of a localized Maxwell field on the brane. Such a black hole can carry two types of charge, one arising from the extra dimension, the tidal charge, and the other one from a localized gauge field confined to the brane. We find that the localized charge on the brane modifies the bulk geometry and in particular the bulk Weyl tensor. The bulk geometry does not depend on different topologies of the horizons. We present the temperature and entropy expressions associated with the event horizon of the braneworld black hole and by using the first law of black hole thermodynamics we calculate the mass of the black hole.Comment: 9 pages, references added, to appear in MPL

    In situ real-time analysis of alloy film composition and segregation dynamics with parallel detection reflection electron energy loss spectroscopy

    Get PDF
    Real-time measurements of GexSi1 – x/Si(001) composition and segregation dynamics in Sn/Si(001) in molecular beam epitaxy are demonstrated using parallel detection reflection electron energy loss spectroscopy. Parallel detection enables quantitative acquisition of low-loss spectra in a time of < 500 µs and surface composition determination in GexSi1 – x/Si(001) via Ge L2,3 core loss analysis to a precision of approximately 2% in time of order 1 s. Segregation and trapping kinetics of monolayer thickness Sn films during Si epitaxy on Sn-covered Si(100) has also been studied using the Sn M4.5 core loss

    Interference Effects Due to Commensurate Electron Trajectories and Topological Crossovers in (TMTSF)2ClO4

    Full text link
    We report angle-dependent magnetoresistance measurements on (TMTSF)2ClO4 that provide strong support for a new macroscopic quantum phenomenon, the interference commensurate (IC) effect, in quasi-one dimensional metals. In addition to observing rich magnetoresistance oscillations, and fitting them with one-electron calculations, we observe a clear demarcation of field-dependent behavior at local resistance minima and maxima (versus field angle). Anticipated by a theoretical treatment of the IC effect in terms of Bragg reflections in the extended Brillouin zone, this behavior results from 1D-2D topological crossovers of electron wave functions as a function of field orientation.Comment: 14 page

    Orientational relaxation in a discotic liquid crystal

    Get PDF
    We investigate orientational relaxation of a model discotic liquid crystal, consists of disc-like molecules, by molecular dynamics simulations along two isobars starting from the high temperature isotropic phase. The two isobars have been so chosen that (A) the phase sequence isotropic (I)-nematic (N)-columnar (C) appears upon cooling along one of them and (B) the sequence isotropic (I)-columnar (C) along the other. While the orientational relaxation in the isotropic phase near the I-N phase transition in system (A) shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I-C phase boundary in system (B). In order to understand this difference (the existence or the absence of the power law decay), we calculated the the growth of the orientational pair distribution functions (OPDF) near the I-N phase boundary and also near the I-C phase boundary. We find that OPDF shows a marked growth in long range correlation as the I-N phase boundary is approached in the I-N-C system (A), but such a growth is absent in the I-C system, which appears to be consistent with the result that I-N phase transition in the former is weakly first order while the the I-C phase transition in the later is not weak. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.Comment: 16 pages and 4 figure
    corecore