4,341 research outputs found

    A new vibration dampening adhesive

    Get PDF
    Formulation of polymers has been devised that, when vibrated, adhesive becomes more fluid (thixotropic) to better absorb shock and, when warmed, will actually hold its shape better (thermosetting) rather than deform

    Flame-resistant thin panels of glass fabric-polyimide resin laminates

    Get PDF
    With a cured polyimide resin content of less than about 20 percent by weight of the finished part, glass fabric laminates which have good structural properties and are self-extinguishing in a pure oxygen atmosphere can be prepared in the thickness range of 0.035 to 0.08 inch

    Classical Black Hole Production In Quantum Particle Collisions

    Full text link
    The semiclassical picture of black hole production in trans-Planckian elementary particle collisions is reviewed.Comment: 5 pages, 7 figures; talk given at the 6th Alexander Friedmann International Seminar on Gravitation and Cosmology, Cargese, France, June 28-July 3, 2004; to appear in the proceedings (Int.J.Mod.Phys.A); v2: typos correcte

    High-energy head-on collisions of particles and hoop conjecture

    Full text link
    We investigate the apparent horizon formation for high-energy head-on collisions of particles in multi-dimensional spacetime. The apparent horizons formed before the instance of particle collision are obtained analytically. Using these solutions, we discuss the feature of the apparent horizon formation in the multi-dimensional spacetime from the viewpoint of the hoop conjecture.Comment: 4pages, 4figure

    Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    Full text link
    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from "quasi-normal" modes of the self-similar system as well as "high-frequency" waves are clarified. We find a characteristic power-law time evolution of the outgoing energy flux which appears just before naked singularity formation, and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.Comment: 20 pages, 7 figures, references added to match the published versio

    Nonaxisymmetric instability of rapidly rotating black hole in five dimensions

    Full text link
    We present results from numerical solution of Einstein's equation in five dimensions describing evolution of rapidly rotating black holes. We show, for the first time, that the rapidly rotating black holes in higher dimensions are unstable against nonaxisymmetric deformation; for the five-dimensional case, the critical value of spin parameter for onset of the instability is ≈0.87\approx 0.87.Comment: 4 pages, 3 figures, accepted for publication in PRD(R

    Black ring formation in particle systems

    Full text link
    It is known that the formation of apparent horizons with non-spherical topology is possible in higher-dimensional spacetimes. One of these is the black ring horizon with S1×SD−3S^1\times S^{D-3} topology where DD is the spacetime dimension number. In this paper, we investigate the black ring horizon formation in systems with nn-particles. We analyze two kinds of system: the high-energy nn-particle system and the momentarily-static nn-black-hole initial data. In the high-energy particle system, we prove that the black ring horizon does not exist at the instant of collision for any nn. But there remains a possibility that the black ring forms after the collision and this result is not sufficient. Because calculating the metric of this system after the collision is difficult, we consider the momentarily-static nn-black-hole initial data that can be regarded as a simplified nn-particle model and numerically solve the black ring horizon that surrounds all the particles. Our results show that there is the minimum particle number that is necessary for the black ring formation and this number depends on DD. Although many particle number is required in five-dimensions, n=4n=4 is sufficient for the black ring formation in the D≄7D\ge 7 cases. The black ring formation becomes easier for larger DD. We provide a plausible physical interpretation of our results and discuss the validity of Ida and Nakao's conjecture for the horizon formation in higher-dimensions. Finally we briefly discuss the probable methods of producing the black rings in accelerators.Comment: 26 pages, 7 figure

    Improved analysis of black hole formation in high-energy particle collisions

    Full text link
    We investigate formation of an apparent horizon (AH) in high-energy particle collisions in four- and higher-dimensional general relativity, motivated by TeV-scale gravity scenarios. The goal is to estimate the prefactor in the geometric cross section formula for the black hole production. We numerically construct AHs on the future light cone of the collision plane. Since this slice lies to the future of the slice used previously by Eardley and Giddings (gr-qc/0201034) and by one of us and Nambu (gr-qc/0209003), we are able to improve the prefactor estimates. The black hole production cross section increases by 40-70% in the higher-dimensional cases, indicating larger black hole production rates in future-planned accelerators than previously estimated. We also determine the mass and the angular momentum of the final black hole state, as allowed by the area theorem.Comment: 28 pages, 14 figures, references and minor comments adde

    Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 1: Measurement of Evapotranspiration at the Environmental Research Center and Determination of Priestley-taylor Parameter

    Get PDF
    In order to study the distribution of evapotranspiration in the humid region using remote sensing technology, the parameter (alpha) in the Priestley-Taylor model was determined. The daily means of the parameter alpha = 1.14 can be available from summer to autumn and alpha = to approximately 2.0 in winter. The results of the satellite and the airborne sensing done on 21st and 22nd January, 1983, are described. Using the vegetation distribution in the Tsukuba Academic New Town, as well as the radiation temperature obtained by remote sensing and the radiation data observed at the ground surface, the evapotranspiration was calculated for each vegetation type by the Priestley-Taylor method. The daily mean evapotranspiration on 22nd January, 1983, was approximately 0.4 mm/day. The differences in evapotranspiration between the vegetation types were not detectable, because the magnitude of evapotranspiration is very little in winter

    Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique

    Get PDF
    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used
    • 

    corecore