58 research outputs found

    fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences

    Get PDF
    There are abundance of transcripts that code for no particular protein and that remain functionally uncharacterized. Some of these transcripts may have novel functions while others might be junk transcripts. Unfortunately, the experimental validation of such transcripts to find functional non-coding RNA candidates is very costly. Therefore, our primary interest is to computationally mine candidate functional transcripts from a pool of uncharacterized transcripts. We introduce fRNAdb: a novel database service that hosts a large collection of non-coding transcripts including annotated/non-annotated sequences from the H-inv database, NONCODE and RNAdb. A set of computational analyses have been performed on the included sequences. These analyses include RNA secondary structure motif discovery, EST support evaluation, cis-regulatory element search, protein homology search, etc. fRNAdb provides an efficient interface to help users filter out particular transcripts under their own criteria to sort out functional RNA candidates. fRNAdb is available a

    Thymidine Catabolism as a Metabolic Strategy for Cancer Survival

    Get PDF
    Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells

    Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells

    Get PDF
    Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling

    Geodemographics profiling of influenza A and B virus infections in community neighborhoods in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The spread of influenza viruses in a community are influenced by several factors, but no reports have focused on the relationship between the incidence of influenza and characteristics of small neighborhoods in a community. We aimed to clarify the relationship between the incidence of influenza and neighborhood characteristics using GIS and identified the type of small areas where influenza occurs frequently or infrequently.</p> <p>Methods</p> <p>Of the 19,077 registered influenza cases, we analyzed 11,437 influenza A and 5,193 influenza B cases that were diagnosed by the rapid antigen test in 66-86 medical facilities in Isahaya City, Japan, from 2004 to 2008. We used the commercial geodemographics dataset, Mosaic Japan to categorize and classify each neighborhood. Furthermore, we calculated the index value of influenza in crude and age adjusted rates to evaluate the incidence of influenza by Mosaic segmentation. Additional age structure analysis was performed to geodemographics segmentation to explore the relationship between influenza and family structure.</p> <p>Results</p> <p>The observed number of influenza A and B patients in the neighborhoods where young couples with small children lived was approximately 10-40% higher than the expected number (p < 0.01) during all seasons. On the contrary, the number of patients in the neighborhoods of the aging society in a rural area was 20-50% lower than the expected number (p < 0.01) during all seasons. This tendency was consistent after age adjustment except in the case of influenza B, which lost significance in higher incidence areas, but the overall results indicated high transmission of influenza in areas where young families with children lived.</p> <p>Conclusions</p> <p>Our analysis indicated that the incidence of influenza A and B in neighborhood groups is related to the family structure, especially the presence of children in households. Simple statistical analysis of geodemographics data is an effective method to understand the differences in the incidence of influenza among neighborhood groups, and it provides a valuable basis for community strategies to control influenza.</p

    Laboratory observations on molting and growth of Antarctic krill, Euphausia superba DANA (extended abstract)

    Get PDF

    Photodynamic Therapy for the Treatment of Skin Tumors

    No full text
    corecore