
using a QuickGene DNA whole blood
kit L (Kurabo Industries, Osaka, Japan).
All exons of the CARD14 gene were
amplified by PCR, and the products
were sequenced on an ABI 3130xl
Genetic Analyser (Applied Biosystems
ABI, Carlsbad, CA). (For specific details
about materials and methods see
Supplementary Data online).
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TO THE EDITOR
Effective therapies for melanoma are
limited despite the fact that the inci-
dence is increasing at a greater rate than
that of any other cancers (Chen et al.,
1996). Identification of key molecules
regulating growth, progression, and
metastasis in melanoma is essential to
provide novel therapeutic strategies.
We previously developed RET-transge-
nic mice of line 304/B6 carrying
oncogenic RET (RFP/RET) under regu-
lation of the metallothionein-I promoter

(RET-mice), in which skin melanoma
develops spontaneously (Kato et al.,
1998). As melanoma in RET-mice
histopathologically resembles human
melanoma, RET-mice have been used
worldwide as a standard model for
melanoma (Kato et al., 1998;
Kumasaka et al., 2010).

The Espin gene encodes an actin
filament–binding protein (Bartles et al.,
1996; Sekerková et al., 2006). Espin
affects the actin cytoskeleton, resulting
in a special association with micro-

villar specializations of sensory cells
(Sekerková et al., 2004). Our recent
study showed that Espin expressed in
melanoma cells in mice and humans
affects metastasis through the regulation
of invasion via lamellipodia formation
(Yanagishita et al., 2014). That was the
first report showing a correlation bet-
ween Espin and cancer cells. However,
there has been no study showing
whether Espin regulates the prolife-
ration of cancer cells. In this study, we
examined the effect of Espin on ancho-
rage-dependent and -independent
growth of melanoma cells.

Anti-Espin rabbit polyclonal antibody
(Yanagishita et al., 2014), murineAccepted article preview online 17 June 2014; published online 10 July 2014

Abbreviations: GFP, green fluorescent protein; RET-mice, RET-transgenic mice
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Mel-ret melanoma cells derived from a
tumor in an RET-mouse (Kato et al.,
1999), and stable clones of control
Mel-ret cells with a green fluorescent
protein (GFP) tag (Clones C3 and C6)

and Espin-depleted Mel-ret cells with a
GFP tag (Clones E2 and E4) (Yanagishita
et al., 2014) by shRNA expression
that were developed in our previous
study were used in this study. Analyses

of anchorage-dependent and -indepen-
dent growth, laser flow cytometry,
immunoblot analysis, immunohistoche-
mistry, TUNEL, and xenografting
were performed according to the
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Figure 1. Espin-mediated regulation of growth in vitro. (a) Levels (mean±SD; n¼ 3) of anchorage-dependent growth at the indicated days in control (clones C3

and C6) and Espin-depleted Mel-ret cells (clones E2 and E4) are presented. (b) Ratios of G1, S, and G2/M phases analyzed by laser flow cytometry using propidium

iodide in control and Espin-depleted cells are presented. The data shown are representative of three experiments. (c) Representative images of colony assays in
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presented in the graphs. Bar¼ 1 mm. (d, e) Protein expression levels (mean±SD; n¼3) of p21Cip1, p27Kip1, Gapdh, p-Erk1/Erk1, p-Erk2/Erk2, and p-Akt/Akt in
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presented as ratios to those in control cells in the graphs.
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methods described previously
(Hasegawa et al., 2008; Ohgami et al.,
2010; Yajima et al., 2012). This study
was performed in Chubu University
and Nagoya University and was
approved by the Animal Care and
Use Committee (approval no. 2410062
in Chubu University and 25444 in
Nagoya University) and Recombination
DNA Advisory Committee (approval
no. 12-03 in Chubu University and
13-35 in Nagoya University). Statistical
analysis was performed according
to the method described previously
described (Kato et al., 2011). Significant
differences (**Po0.01, *Po0.05) from

the control based on Student’s t-test are
presented.

The results for anchorage-dependent
growth on days 1–3 (Figure 1a) are
shown as ratios to that on the day of
starting the culture (day 0). The growth
of Espin-depleted Mel-ret melanoma
cells for 3 days was 40–51% reduced
compared with that of control Mel-ret
melanoma cells (Figure 1a). A compara-
tive study of the cell cycle profiles of
control and Espin-depleted cells by laser
flow cytometry showed a 410%
increase of G1 phase in Espin-depleted
cells compared with that in control cells
(Figure 1b). Moreover, anchorage-

independent growth of Espin-depleted
cells was 90–95% reduced compared
with that of control cells (Figure 1c). To
clarify the molecular mechanism of
Espin-mediated regulation of growth,
regulators for G1 phase were examined
(Sherr and Roberts, 1999). Levels of
p21Cip1/Gapdh and p27Kip1/Gapdh
protein expression in Espin-depleted
cells are presented as ratios to those
in control cells (Figure 1d). Protein
expression levels of cyclin-dependent
kinase inhibitors p21Cip1 and p27Kip1 in
Espin-depleted cells were higher than
those in control cells (Figure 1d),
whereas expression of p16Ink4a protein
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was undetectably low in both Espin-
depleted and control cells (data not
shown). As the cell proliferation rate of
Mel-ret cells with both Espin and
p21Cip1 depletion was significantly
higher than that of cells with only dep-
letion of Espin (Supplementary Figure S1
online), Espin might work upstream of
p21Cip1 in the same pathway and
regulate cell proliferation. Activities
of Erk and Akt, both of which are cell
proliferation–associated proteins
(Ohshima et al., 2010), in Espin-
depleted cells were lower than those
in control cells (Figure 1e). Previous
studies showed that p21Cip1 is asso-
ciated with cell proliferation via the
Erk/Akt pathway (Cmielová and
Rezáčová, 2011). Taken together,
p21Cip1 might be correlated with Espin-
mediated regulation of cell proliferation
and Erk/Akt activity.

Our in vivo experiment on anchorage-
independent growth by subcutaneous
inoculation of Mel-ret melanoma cells
into nude mice showed that tumor size
(Figure 2a and b) and weight (Figure 2c)
in Espin-depleted cells were 92%
and 94% smaller than those in control
cells, respectively. Immunohistochem-
ical analysis of a proliferation marker
(Ki67) in xenografted tumors showed
that the ratio of proliferating cells in
Espin-depleted cells was decreased com-
pared with that in control cells
(Figure 2d), whereas there was no differ-
ence in the ratio of TUNEL-positive
apoptotic cells between Espin-depleted
cells and control cells (Figure 2d). These
results suggest that Espin-mediated
growth inhibition in vivo is dependent
on decreased cell proliferation rather
than increased apoptotic cell death.

We demonstrated for the first time
that Espin regulates both anchorage-
dependent growth and anchorage-inde-
pendent growth in melanoma cells
through G1 arrest and modulates the
expression and/or activity of p21Cip1,
p27Kip1, Erk, and Akt. There has been
no study other than our previous
study (Yanagishita et al., 2014) and the
present study with melanoma cells
showing the roles of Espin in cancer
cells. Our previous study using human
melanoma cells further showed higher

expression levels of Espin protein in five
melanoma cell lines with BRAF
mutation and one melanoma cell line
with NRAS mutation compared with the
expression level in primarily cultured
melanocytes (Yanagishita et al., 2014).
Our previous study (Yanagishita et al.,
2014) and the present study showed that
Espin controls both cell proliferation and
invasion. As it was previously reported
that regulation of both cell proliferation
and invasion is important for the control
of metastasis of melanoma (Chin, 2003),
we speculate that Espin-mediated
reduction in proliferation can secon-
darily suppress metastasis of mela-
noma. Thus, our recent findings for
Espin may provide a potential benefit
for Espin-targeting therapy for mela-
noma. Further studies are needed to
evaluate the usefulness of Espin as a
biomarker and/or a molecular target for
therapy in melanoma.
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